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Abstract

Key-value stores are the fundamental components for
storing and retrieving data. It is essential to persist data
even in the case of a power failure, which could happen
at any time. Crash-safe key-value stores are difficult to
implement; they maintain large, complex, on-disk data
structures that atomically update. Modern techniques for
automatically verifying software correctness are power-
ful, but require a finite design.

This thesis presents a design of a crash-safe key-value
store amenable to automated verification. The key to the
design uses chained copy-on-write b-trees to finitize the
free-space map. Chaining bounds the size of each b-tree,
which limits the number of updates necessary to terminate
an operation. Our experience shows that chained copy-
on-write b-trees are simpler to understand and provide
performance on par with other implementations.

1 Introduction

Key-value stores are a fundamental piece of many sys-
tems. They provide the basic service of storing and re-
trieving data with varying degrees of reliability and per-
formance. Key-value stores are used in databases [9], file
systems [11], and operating systems [14]. Similar to file-
systems, most persistent key-value stores are designed to
survive machine failures [2, 9] without losing data. It is
difficult to build services that can gracefully handle fail-
ure at any time, while still providing good performance.
Many bugs have been found in popular databases and
file-systems that have led to data loss [5, 8, 13].
Previous work in formal verification has successfully
proved some systems to be free of bugs [7, 12, 14]. How-
ever, writing manual proofs requires a significant devel-
opment effort [6]. Recent research has therefore focused
on automated verification, which uses an SMT solver to
verify correctness [7, 12]. Automated verification sig-
nificantly lowers the proof burden for verified systems,
but imposes an additional constraint on the design: op-
erations must be finite, meaning every operation must be
expressible as a set of traces of bounded length [7, 12].
An on-disk key-value store must maintain a free space
map for the allocation and deallocation of disk blocks.
This free space map must be consistent with the key-value
store, even between crashes. Finitizing the free space map

is difficult. One strategy, used by BTRFS [11], is to keep
a b-tree to store reference counts for itself and the original
key-value store, and modify the b-tree in memory until
reaching a fixed point. This is problematic for automated
verification because the interface is not finite.

Our contribution is a finite design of a crash-safe key-
value store using chained b-trees: each b-tree stores ref-
erence counts for the previous tree. We find this approach
allows us to finitize the free space map, is easier to under-
stand, and still provides better performance than a simple
write-ahead log.

The rest of this paper is organized as follows. §2 intro-
duces copy-on-write b-trees, the challenge of free space,
and automated verification. §3 describes free space man-
agement with chained copy-on-write b-trees. §4 presents
optimizations. §5 compares chained b-trees to alternative
implementations. §6 reports implementation details. §7
evaluates performance. §8 concludes.

2 Background

This section gives an overview of copy-on-write b-trees,
automated verification, and the challenges of persisting a
crash-safe key-value store on disk.

2.1 Copy-on-Write B-trees

B-trees [1, 10] are space efficient structures good for
storing large chunks of data. They have a wide branching
factor; each node has hundreds of children. Nodes store
keys in sorted order, and enforce this invariant on their
sub-trees. Traditionally, for a node n with key k at index
i, all of n’s children up to i store keys less than k, while
all n’s children after i store keys greater than or equal to
k.

This paper exclusively focuses on b+-trees (which we
later refer to as just “b-trees”), a variant which keep all
values in the leaf nodes. B+-trees have the advantage of
more compact interior node structure, which makes them
better for dealing with disks.

Many file systems [3, 11] use copy-on-write (COW)
b-trees [10] to provide atomicity, crash recovery, and
efficient clones. When the tree would modify a node, it
copies the node to a new location on disk, then modifies
the copy. Then the parent must be updated to point to
the new location. Changes propagate up to the root of
the tree. When the operation completes successfully, the



old root can be discarded. If the system crashes, copy-
on-write preserves the original tree. Creating multiple
clones is easy and efficient with COW, since trees share
as many unmodified blocks as possible.

B-trees design nodes to fit exactly into a single disk
block (usually 4KB). This minimizes the number of disk
accesses when reading or writing a tree.

For example, to look up a key, traverse the tree from
the root to a leaf node.

1. If the desired key is less than the minimum key in
the current node, stop. The tree does not contain the
key.

2. If the current node is a leaf node, find the key within
the node, read the corresponding block from disk,
and return the value.

3. If the current node is a branch node, find the largest
key less than or equal to the desired key, read the
corresponding block from disk as the new current
node, and go to step 1.

Since each node fills one block, the operation reads at
most depth blocks. In practice, the depth is usually very
small, less than 5.

To insert a key value pair into a COW b-tree, traverse
the tree to a leaf node, then insert. On the way down,
split any already full nodes.

1. Shadow the current node.

(a) Increment the reference counts of all children
of the current node.

(b) If the reference count for the current node is
greater than 1, decrement it.

2. If the key to insert is less than the minimum key in
the current node, replace the minimum key.

3. If the current node is a leaf node, write the value to
a new block, then insert the key and block into the
node.

4. If the current node is a branch node, choose the child
the same way as get.

5. If the child node is full, split it into two nodes and
add a key to the current node, then continue with the
child containing the correct key range after the split.

6. Go back to step 1 with the child as the current node.

7. After the insert, write all modified nodes to new
locations on disk.

1 5 1 5
1 3 5 7 5 7
1 2 3 4 5 6 7 8 7 8 9

Figure 1: Inserting the key 9 into a COW b-tree. Values in
leaves are not shown. Red nodes have been shadowed.

The top-down preemptive split guarantees there is al-
ways room in the parent to insert an additional key, in
case a child splits. There is a special case when the root
node splits. The tree creates a new root with 2 children,
and increments the depth [10]. At worst, the tree makes
3 modifications per level - the two split child nodes and
the parent.

For example, Figure 1 shows a copy-on-write b-tree
after inserting the key 9. First, the tree shadows the root
node. Then, because 9 > 5, the tree shadows the right
child. Finally, since the current node is a leaf, the tree
inserts the key.

Remove follows a similar algorithm, except instead of
preemptively splitting nodes, the tree preemptively fixes
nodes by either borrowing keys from a neighbor or merg-
ing two nodes together and removing a key from the
parent.

With reference counting, it is simple to deallocate old
trees.

1. Decrement the reference count of the root.
2. Then for each child node:

(a) Decrement the reference count.

(b) If the reference count is still greater than 0,
continue to the next node.

(c) If the reference count is now 0, free the block
and repeat (2) for each of the node’s children.

2.2 Free space

In addition to crash recovery, a persistent b-tree needs to
manage a free space map of disk. With copy-on-write,
and especially with clones, multiple trees may share some
blocks. The free space map must then store reference
counts of every block on disk. Keeping a finite free-
space map consistent with the b-tree in the presence of
crashes without leaking resources is a significant chal-
lenge. The WAFL file system uses a large bitmap and
logical logging [3]. BTRFS uses another copy-on-write
b-tree to map block numbers to reference counts [11].
A superblock is atomically updated with the roots of all
b-trees.



Problematically, something needs to store reference
counts for the free-space tree as well. BTRFS uses the
free-space tree to store its own reference counts, and re-
lies on hitting a fixed point. Allocating a block might
cause the tree to split, requiring extra allocations from
the same tree. Since each block can store many refer-
ence counts, eventually the allocations cease. However, a
solver would have a difficult time verifying this because
of its unbounded nature.

2.3 Automated Verification

Recent work [7, 12] has bypassed manual proofs by
formulating verification in satisfiability modulo theories
(SMT), and using a solver such as Z3 to check correctness.
For a solver to terminate in a reasonable time, the number
of execution paths of a program must be limited. Systems
like Hyperkernel [7] and Yggdrasil [12] approach this by
designing a finite interface, one in which all operations
avoid unbounded loops and recursion. We take a similar
approach to the design of our b-tree.

3 Design

The primary purpose of our design is to provide persis-
tence and crash safety in a form amenable to automated
verification. As aresult, a major requirement is bounding
all operations.

We limit the maximum depth of the tree to 4 (a tree
consisting of only the root has a depth of 0), enough to
store hundreds of billions of keys. Our nodes fit exactly
into 4KB blocks. With 128-bit keys, each node can store
up to 170 keys.

3.1 API

The b-tree supports a minimal API:

¢ put(key, value)

* get(key)

* remove(key)

Keys and values are configurable sizes. For our testing,
we used 128-bit integer keys, and 4KB values. The al-
gorithms for put, get, and remove are identical to those
in §2.1, except for changes to shadowing and reference
counts described in §3.3.

3.2 Free Space

To store reference counts, we unroll the single BTRFS
free-space tree into multiple trees, each smaller than the
previous. When the first free-space tree needs to allocate
a block, it uses a second, much smaller b-tree. That
tree uses a third, even smaller b-tree. The final b-tree is
guaranteed to be so small that an array of its reference
counts can fit into a single 4KB disk block. Chaining four
trees together in this way is enough to support a maximum
depth of four for the top-level b-tree.

This approach offers two main advantages. First, it is
finite. We bound the depth of each tree, which bounds
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Figure 2: Inserting the key 4 into a COW b-tree with two
chained b-tree allocators. Each tree stores reference counts in
the tree below it. The smallest tree stores reference counts in a
single block array.

the number of modifications for a single operation, which
bounds the number of allocations, which bounds the mod-
ifications to the next tree, and so on. Second, we can
reuse the same b-tree implementation with different key
and value sizes to manage free space. Instead of 128-bit
keys and 4KB values, we use 64-bit keys and values. This
means we can reuse the verification of the top-level b-tree
to show the free-space management is correct.

3.3 Chaining Implementation

Figure 2 shows a simplified example of inserting a new
key into a b-tree with two chained tree allocators. The
top-level b-tree has a row of leaf nodes which store keys
and block numbers of the corresponding values. The
value blocks are shown below the leaf nodes; they are
reference counted the same as regular tree nodes. The
allocator b-trees simply store reference counts instead of
block numbers in the leaf nodes. When the top-level b-
tree allocates new blocks for its shadowed nodes, the first
allocator tree runs out of space in one of the leaf nodes,
so the node splits. The second allocator tree does not
require a split. The array allocator shadows the single
block and writes the new reference counts for the second



tree allocator. A small number of blocks equal to the
maximum number of clones are reserved to store the
array allocators.

The allocators dramatically decrease in size. In prac-
tice, one leaf node can store up to 255 reference counts.

With chaining, updating reference counts causes up-
dates to another tree. The relevant algorithms are roughly
implemented as follows.

inc_ref(btree, block):
ref = get(btree, block)
put(btree, ref + 1)

dec_ref(btree, block):
ref = get(btree, block)
put(btree, block, ref + 1)

alloc_block(btree):
for block = @ to MAX_BLOCK
if !containsKey(btree, block) or
get(btree, block) == 0:
inc_ref(btree, block)
return block

shadow(allocator, node):
for child_block in node.children:
inc_ref(allocator, child_block)

if get(allocator, node.block) > 1:
dec_ref(allocator, node.block)

new_block = alloc_block(allocator)
write(new_block, node)

get(btree, key):
node = read(btree.root)
while !node.leaf:
node = get_child(node, key)
if node is None:
return None

return node_get_value(node, key)

put(btree, key, value):

for each node on path from root to leaf:

shadow(btree.allocator, node)
split_if_full(node)

node_insert_key(node, key, value)

remove(btree, key):
for each node on path from root to leaf:
shadow(btree.allocator, node)
fix_if_almost_empty(node)

node_delete_key(node, key)

In practice, there is a slight problem with the above
algorithms. After shadowing a node, the parent must
be updated with the new location. This is solved as a
byproduct of caching modified nodes before writing to
disk, as described in §3.5.

3.4 Crash Safety

The b-tree must persist through a system failure that could
happen at any point. It may not store the current oper-
ation, but should retain all previous data. The b-tree
reserves the first block of the disk as a superblock. This
block contains the block numbers of the root nodes of the
top-level b-tree and each allocator tree. Once an opera-
tion completes successfully, the superblock is atomically
updated with the new roots. If the system crashes before
updating the superblock, the trees remain. The next op-
eration after the crash will read the superblock and use
the most recent stable trees.
A single atomic put works as follows:

1. Read the superblock to locate each b-tree.
2. put the key value pair into the top-level b-tree.

3. Flush the cache of the top-level b-tree (explained fur-
ther in §3.5). This step simply ensures all shadowed
nodes are written to new locations on disk.

4. Deallocate the old b-tree.

5. Repeat steps 3-4 on the first allocator b-tree, then on
the second, and so on.

6. Update the superblock.

Deallocation is not strictly necessary; the old b-tree
can be kept unmodified as a snapshot and restored later.

3.5 Mark dirty

There is a big problem with the number of allocations
needed for chained COW b-trees. If each reference
count update requires a put which shadows an entire
path through the tree, then each put requires several al-
locations. Each of those allocations is another put on
a smaller tree, which requires even more puts the next
level down. The trees supposed to be kept small grow
even bigger than the large trees, overflowing the array
allocator. Most of these allocations are unnecessary.
Mark dirty [10] is an important optimization for COW
b-trees, and essential for chaining. When shadowing a



node, set a dirty bit in the node instead of immediately
writing it to a new location on disk. Keep the dirty
node in memory and use the cached copy for subsequent
modifications. When the b-tree is ready to be committed,
flush all the dirty nodes to disk.

With mark dirty, when a tree allocator first inserts a
new reference count into a leaf, it can insert as many more
reference counts as that leaf can hold, without requiring
additional allocations from the next tree. This is key to
bounding the number of updates to complete an operation,
as well as minimizing disk accesses.

4 Optimizations

This section aims to improve the performance of chained
b-trees by reducing the number of disk accesses. We do
this two ways, batching writes and reducing fragmenta-
tion.

4.1 Write Batching

Persistent key-value stores commonly use write batching
to further reduce disk accesses [9]. We extend mark dirty
to hold nodes in memory beyond just one operation. After
some number of updates, determined by the batch size,
the tree flushes its cache. If the tree modifies a node
multiple times in a single batch, it only needs to write the
node to disk once. The greater the batch size, the longer
the tree holds nodes in memory, and the less it writes
to disk. However, a larger batch size increases memory
usage. We use a batch size of around 100, which reduces
the number of disk accesses by two orders of magnitude.

4.2 Fragmentation

One of the biggest causes of disk writes is incrementing
childrens’ reference counts when marking dirty a clean
node. Figure 3a shows what happens in the worst case
when shadowing a node with children fragmented across
many different blocks. The allocator tree needs to modify
every path, which causes unnecessary disk writes. Fig-
ure 3b shows what happens in the best case when shad-
owing a node with children stored in contiguous blocks.
The allocator tree only modifies one path.

Designing an allocator to minimize fragmentation is
beyond the scope of this paper. A basic approach could
examine all dirty nodes at the time of the flush, and then
allocate contiguous blocks for siblings. Another strategy
could periodically reorganize nodes so siblings blocks lie
close together. However, this could become expensive as
the tree increases in size.

5 Discussion

This section presents two alternative implementations to
chained copy-on-write b-trees, a write-ahead log and a
fixed-point b-tree. We compare chaining to both alterna-
tives in terms performance and scalability.

5.1 Write-Ahead Log Allocator

For comparison purposes, we implemented another sim-
pler free space manager, the log allocator. It uses a large
bitmap of reference counts, and keeps a write-ahead log
for crash recovery. To allocate a block, the log allocator
finds an entry in the bitmap with a reference count of zero,
appends a new entry to the log, and increments the entry
in the bitmap to one. Updating the superblock proceeds
as follows.

1. Ensure both the b-tree and log are written to disk,
then flush.

2. Update the superblock to point to the new b-tree root
and the new root of the log. Since the log may span
multiple blocks, the superblock only stores the first
block of the log and its length. Then flush the disk.

3. Write the new array of reference counts to disk, then
flush.

4. Clear the number of entries in the log, and flush one
last time.

The log allocator requires four disk flushes, whereas
the chained tree allocators require two. However, for
updating a single reference count, the log allocator has
less overhead, because it does not need to modify an
entire tree. With write batching, both allocators use more
memory. In our experiments, the log grew several times
faster than the tree allocators’ cache, though the cache
took more memory initially.

5.2 Fixed Point

A single fixed-point b-tree can allocate blocks for itself
using cached dirty nodes, incurring no additional writes
in the best case. Chained b-trees thus have a higher
overhead compared to a single b-tree. The first time a
chained b-tree allocates a block, the next tree must shadow
a new path. In the worst case, updating reference counts
of a fixed-point tree allocator requires shadowing many
paths, same as with a chained tree allocator. However, a
chained tree allocator shadows paths in another shallower
tree, causing fewer modifications than a deeper fixed-
point tree which shadows its own paths. A fixed-point
tree requires the same disk flushes as chained trees.

Chained b-trees are slightly less flexible, because the
array allocator must fit all reference counts into a single
block, and the number of b-trees must be fixed at setup
time.

6 Implementation

Our implementation is about 2,000 lines of C code, mea-
sured with CLOC. Testing and benchmarking is about
500 lines of C code.
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Figure 3: Best case vs. worst case shadowing of a path in a COW b-tree with another COW b-tree allocator.

7 Evaluation

This section aims to answer the following questions:
* What is the performance of the b-tree in terms of
disk operations (reads, writes, and flushes)?
e What is the performance impact of the various opti-
mizations?
* How does the performance of chained b-tree alloca-
tors compare to a simpler array allocator?

7.1 Performance of Chained B-tree Allocators

Figure 4a shows the number of disk writes each tree
makes for a single atomic put, as a function of the size
of the tree. By far, the first b-tree allocator dominates the
number of writes. This is because it makes many more
modifications than any other tree. Recall the algorithm
for shadowing a node. When the top-level b-tree shadows
a node for the first time, it increments the reference count
of all its children. With 100,000 keys, the tree has a depth
of two. To insert a new key, it must shadow three nodes
on the path from the root to the leaf. For each shadowed
node, it increments around 128 reference counts. This
means the first b-tree allocator needs to update hundreds

of keys. The tree then has to shadow several different
paths from the root to different leaves. A b-tree needs to
write each shadowed node once to disk. While the top-
level b-tree only shadows three nodes, the first allocator
b-tree shadows many more.

Interesting behavior occurs with sequential puts. Pe-
riodically, the number of writes from the first allocator
tree drops sharply. This happens when a node high in
the top-level b-tree, possibly the root or one of its direct
children, splits. Before the split, shadowing the full node
increments 170 reference counts. After the split, shad-
owing the new node only increments half of the reference
counts. The splits occur at regular intervals because the
puts are sequential. Figure 4b shows writes per put per
tree with random keys.
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7.2 Micro-benchmarks

db_bench is a set of microbenchmarks provided with
LevelDB [4]. We selected four benchmarks to evaluate
performance. Each commits 50,000 operations, using
128-bit keys and 4K values.

* Write Sequential inserts keys in ascending order.
» Write Random inserts random keys.

* Delete Sequential takes a full b-tree of 50,000 keys
and deletes all keys in ascending order.

e Delete Random takes a full b-tree keys and tries to
delete randomly selected keys between 0 and 50,000.

Figure 5a compares the number of writes of chained
b-tree allocators versus a write-ahead log allocator. This
configuration uses a batch size of one; each put is atomic.
This means the chained allocators flush their caches after
every operation, deallocate all old trees, and then have to
shadow everything again. The log allocator has no extra
trees to shadow, so it incurs less overhead.

Figure 5b compares the number of writes of chained
b-tree allocators using different batch sizes. With a larger
batch size, the b-trees cache nodes for longer. The smaller
trees can cache every node, allocate blocks using the in-
memory tree, and only write to disk after every batch.

Figure 5c compares the number of writes of chained
b-tree allocators versus a write-ahead log allocator, using
a batch size of 100 for both. While both allocators benefit
from batching, the tree allocator scales better than the log
allocator. This is because write batching minimizes the
overhead of chaining, and tree allocators better handle
sparse keys. Since the log allocator uses a bitmap, keys
that are far apart in value are stored in separate blocks on
disk. Updating those keys requires writing to different
blocks. A b-tree can fit those keys in the same node if
there are only a few keys in between.

8 Conclusion

Chained copy-on-write b-trees finitize the free-space map
of crash-safe key-value stores. They provide crash-safety,
and good performance with optimization. The finite de-
sign allows for automated verification in the future, and
is simpler to understand and implement. We believe this
offers a promising direction for future design of low level
crash-safe key-value stores, by designing the system for
proof automation.
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