
Technical Report UW-CSE-17-08-02

Porting Hyperkernel to the ARM Architecture

Dylan Johnson

University of Washington
dgj16@cs.washington.edu

Keywords ARM, AArch64, Exokernel, Operating
Systems, Virtualization

Abstract
This work describes the porting of Hyperkernel, an
x86 kernel, to the ARMv8-A architecture. Hyperkernel
was created to demonstrate various OS design deci-
sions that are amenable to push-button verification.
Hyperkernel simplifies reasoning about virtual mem-
ory by separating the kernel and user address spaces.
In addition, Hyperkernel adopts an exokernel design to
minimize code complexity, and thus its required proof
burden. Both of Hyperkernel’s design choices are ac-
complished through the use of x86 virtualization sup-
port. After developing an x86 prototype, advantageous
design differences between x86 and ARM motivated us
to port Hyperkernel to the ARMv8-A architecture. We
explored these differences and benchmarked aspects
of the new interface Hyperkernel provides on ARM
to demonstrate that the ARM version of Hyperkernel
should be explored further in the future. We also outline
the ARMv8-A architecture and the various design chal-
lenges overcome to fit Hyperkernel within the ARM
programming model.

1. Introduction
Hyperkernel was created to demonstrate the techniques
for building an OS that can be formally verified us-
ing push-button techniques, such as satisfiability mod-
ulo theories (SMT). The design of Hyperkernel empha-
sized a small, statically allocated, and simple exoker-
nel. During development, it became clear that placing
Hyperkernel in non-root ring 0 would lead to problems.
First, the virtual memory model on modern operating
systems cannot be verified in a reasonable amount of
time using SMT solvers, as the kernel and user ad-
dress space are shared. Second, an exokernel built us-
ing the typical x86 programming model would have

trouble exporting hardware control to user space ap-
plications. To solve these issues, Hyperkernel was de-
signed to run within x86’s root CPU mode. While tra-
ditionally reserved for hypervisors, root mode created
a clean separation between the kernel and user address
spaces, making it easier to prove properties of isola-
tion. In addition, a kernel running in root mode can be
greatly simplified by exporting hardware resource man-
agement to user processes in non-root ring 0.

This paper provides a single core contribution. We
present an investigation into the ability of the ARM
architecture to provide an appealing foundation for
push-button verified operating systems. When porting
Hyperkernel to ARM we emphasized maintaining the
original features of Hyperkernel that allowed it to be
easily verified on x86. Additionally, the ARM architec-
ture created the possibility of optimizing parts of the
Hyperkernel implementation. For example, ARM pro-
vides greater flexibility to developers during transitions
into hypervisor mode, indicating that virtual machine
abstractions not maintained in Hyperkernel could lead
to faster mode transitions on ARM. We outline these
optimizations and benchmark a few of the design deci-
sions made during the porting of Hyperkernel to ARM.

The rest of this paper is organized as follows. §2 dis-
cusses work similar to porting Hyperkernel to ARM. §3
provides an overview of the ARM architecture. §4 de-
tails the design of Hyperkernel on ARM. §5 describes
the implementation of Hyperkernel on ARM and the
differences between the x86 and ARM versions. §6
presents our experiments and the performance of ARM
hypercalls. §7 concludes.

2. Related work
OS design. Hyperkernel contains several similarities
to Dune, where each process is virtualized, allowing
them to have more direct control over hardware fea-
tures such as interrupt vectors [3]. Dune uses a small

1



Linux kernel module to mediate several running virtu-
alized processes, and a user-level library aids in man-
aging the newly-exposed resources.

Hyperkernel also draws inspiration from Exoker-
nel [6]. An exokernel is an operating system kernel
that provides user level management of operating sys-
tem abstractions. In an exokernel, user applications
are allowed to manage hardware resources, while the
kernel enforces resource policies for the entire sys-
tem. This design provides a platform for domain spe-
cific optimizations, increased flexibility for application
builders, and better optimizations for specific work-
loads [6]. Previous exokernel implementations such as
Aegis [6] and Xok [7] provided low-level abstractions
by running user code in the same address space and
CPU mode as privileged kernel code. This allowed the
sharing of memory, but fault isolation was difficult to
guarantee. In Hyperkernel, low-level abstractions are
provided by leveraging virtual machine support. These
extensions were previously thought to be too slow to
be efficient [6] but recent popularity of hardware virtu-
alization support has slowly improved the performance
and in some cases the costs have been mitigated en-
tirely [4].

Hypervisor design. KVM-ARM is a hypervisor that
was built and accepted into the mainline Linux kernel.
Similar to Hyperkernel, KVM-ARM utilizes the ARM
programming model in an uncoventional way to both
reduce and simplify the code required. Specifically, it
uses a new hypervisor design called split-mode vir-
tualization, where only a small portion of hypervisor
execution uses the ARM virtualization extensions. In-
stead, the KVM-ARM hypervisor transitions back into
the host kernel where it can take full advantage of al-
ready built OS mechanisms [5].

3. ARM Architecture Overview
The ARMv8-A architecture, which we will refer to as
simply the ARM architecture from here forward, was
designed for full application workloads on the Cortex-
A family cores. It defines a rich programming model
for applications, operating systems, and hypervisors.
This section summarizes the core pieces of the ARM
architecture and how they were utilized in the imple-
mentation of Hyperkernel on ARM.

App App App App

OS OS

Hypervisor

Secure Monitor

EL0

EL1

EL2

EL3

Figure 1. The ARM programming model. Moving
down the exception levels increases privilege level. The
secure exceptions levels are omitted for clarity.

3.1 Exception levels
Figure 1 shows the four possible CPU modes defined
by the ARM architecture. Each mode is referred to as
an exception level (abbreviated EL0-EL3) that deter-
mines the privilege of currently executing software.
Transitions into higher exception levels are caused by
either synchronous or asynchronous events, called ex-
ceptions. An exception can only be taken to the next
highest exception level or to the current exception
level when above EL0. When returning from an ex-
ception, the exception level can only decrease by a
single level or stay the same [1]. In addition, each ex-
ception level supports two execution states, AArch32
and AArch64. AArch32 uses 32-bit widths and is
backwards compatible with the ARMv7-A architecture
while AArch64 uses 64-bit widths and is a new feature
introduced in ARMv8. Hyperkernel currently supports
only AArch64 in order to simplify its implementation.

ARM designed each exception level to provide spe-
cific capabilities for certain types of system level soft-
ware. For example, the least privileged level, EL0, typ-
ically runs user applications. EL0 has limited exposure
to system configuration registers and exception han-
dling in order to provide process isolation. EL1 is de-
signed for operating system execution. It exposes ex-
ception handling, page table modification, and many
other system configuration options. EL2 equips soft-
ware with hardware support for virtualization, which
is typically utilized by a hypervisor. Software in EL2
is given the tools to manage virtual memory, excep-
tion handling, timers, and other sensitive system com-
ponents to provide isolation between virtual machines
in EL1. EL2 has the ability to trap virtual machines into

2



264

0

TTBR1_EL1

unused

TTBR0_EL1

TTBR0_EL2 TTBR0_EL3

EL0/EL1 EL2 EL3

Figure 2. The ARM virtual memory model. EL0 and
EL1 share an address space across two page table base
registers, TTBR0_EL1 and TTBR1_EL1. EL2 and EL3
have separate address spaces.

EL2, where it can emulate or forward sensitive opera-
tions. The last and most privileged level is EL3, which
has the ability to switch between a non-secure and se-
cure execution state. These two states are orthogonal to
the exception levels and secure mode grants access to
a separate physical memory. Software running in EL3
typically manages the transitions between the secure
and non-secure CPU modes.

3.2 Virtual Memory Model
Figure 2 shows a graphical representation of the ARM
virtual memory model. Each exception level above EL0
has control over the configuration of the MMU when
executing in their respective levels. For page table man-
agment, ARM banks page table base registers (called
translation table base registers, TTBRs) across each ex-
ception level. In contrast, an x86 CPU has a single page
table base register for all CPU modes. EL1 and EL0
share an address space accross two TTBRs, TTBR0_-
EL1 and TTBR1_EL1, that are under EL1 control. This
shared address space is split in half with TTBR1_EL1
for the upper addresses and TTBR0_EL1 for the lower
addresses. This split provides a convenient mechanism
for splitting a kernel and user address space.

Memory virtualization is provided by a second stage
of address translation similar to the extended page ta-
bles (EPT) on x86. A virtual machine running in EL1
will first translate virtual addresses into intermediate
physical addresses (IPA) using its own page table.
Next, the second stage translates IPAs into physical
addresses using a page table provided by the hyper-
visor in EL2. A hypervisor can use the second stage

of translation to protect MMIO peripherals from direct
control by a VM by forcing data abort exceptions that
route to EL2.

3.3 TLB
The ARM virtual memory model provides features for
operating system developers to mitigate unnecesary
TLB flushes. For example, ARM TLB’s can match
entries based on the current exception level, remov-
ing the need to flush the TLB when taking an excep-
tion [1]. Similarly on x86, a vm exit into root mode
will not cause a TLB flush. In addition, ARM defines
a unique application specific identifier (ASID) that an
OS assigns to each user process. ASID’s are commu-
nicated to the hardware through the top sixteen bits of
TTBR0_EL1. During an address translation, the hard-
ware matches TLB entries using the ASID, removing
the need to flush the TLB during a context switch.
On x86, a similar mechansim is provided called the
process-context identifier (PCID).

3.4 Interrupts
Interrupts on ARM are managed and routed by ARM’s
Generic Interrupt Controller (GIC). The GIC architec-
ture defines mechansims to control the generation, rout-
ing, and priority of interrupts in a system [2]. The
third generation of the GIC architecture, GICv3, de-
fines two compontents of a GIC, the distributor and re-
distributors. Each system has a single distributor, which
handles global interrupts and interprocessor interrupts,
while each CPU has a redistributor, which manages lo-
cal interrupts (e.g. caused by local timers). Interaction
with the GIC distributor is provided through an MMIO
interface. Interaction with the GIC redistributors is pro-
vided through a set of configuration registers.

The GICv3 architecture defines a virtual GIC (vGIC)
interface for each CPU that provides virtual interrupt
management capabilities to a hypervisor. When virtual
interrupts are enabled, all physical interrupts are routed
to EL2. Before the target VM is scheduled on a phys-
ical CPU, the hypervisor signals for a virtual interrupt
to be delivered once execution has returned to EL1. If a
VM attempts to configure the GIC distributor through
the MMIO interface, the second stage of translation
will trap execution into EL2 where the hypervisor can
emulate the operation. VM accesses to the GIC system
registers are routed to a set of virtual system registers,
which control virtual interrupt delivery. During a vir-
tual CPU context switch, the hypervisor must save the

3



writable virtual system register state, the state of any
pending virtual interrupts, and the VM specific virtual
interrupt configuration.

3.5 Timers
Each ARM CPU contains two counters, a physical
counter and a virtual counter that indicate the passage
of time. The virtual counter value is calculated by sub-
tracting an offset from the physical counter. These two
counters power a set of generic timers accessible from
each CPU mode. The physical counter powers an EL1
timer and an EL2 timer, while the virtual counter pow-
ers a virtual timer. All three timers support upcounter
and downcounter interrupts that will only generate an
interrupt for its assigned CPU. Traditionally, a hypervi-
sor will use the EL1 timer to preempt virtual machine
execution, while virtual machines in EL1 use the vir-
tual timer to preempt user processes. To avoid virtual
machines from observing the physical passage of time,
any accesses to the EL1 timer from EL1 are trapped
into EL2.

4. ARM Hyperkernel Design
4.1 Exception Levels
Similar to Hyperkernel on x86, the ARM version of
Hyperkernel required that the kernel and user address
spaces be clearly separated. In addition, the ARM ver-
sion of Hyperkernel needed the ability to easily ex-
port low level hardware resources to user space, such
as page table and exception management. The place-
ment of Hyperkernel within the correct exception level
was crucial for providing these features. This section
describes in detail the factors considered when placing
Hyperkernel within the ARM programming model.

We had three options for the placement of Hyperkernel
user processes, EL0, EL1, and EL2. EL0 does not
have access to many system configuration registers,
making it too restricted for an exokernel to properly
provide low-level hardware control. Placing user pro-
cesses in EL2 also creates various difficulties. First,
Hyperkernel would not be able to assign ASIDs to pro-
cesses running in EL2, which would result in a TLB
flush during every context switch. Second, user pro-
cesses in EL2 would have full control over TTBR0_-
EL2. Hyperkernel would be protected by secure mem-
ory in EL3, but a malicious process could break iso-
lation by manually changing its page tables to expose
another processes physical memory. Third, because vir-

tual interrupts can only be routed to EL1, exporting
interrupt handling to EL2 would require software to
register interrupt handler upcalls to the kernel, which
complicates the features already provided by the vGIC.
Thus the most beneficial choice was to place user space
in EL1.

With user processes in EL1, Hyperkernel was re-
stricted to either EL2 or EL3. Placing Hyperkernel
in EL3 provides the same functionality as placing
Hyperkernel in EL2, because EL3 is strictly more priv-
ileged than EL2, but we decided to place Hyperkernel
in EL2 because features such as the security modes
would unnecessarily complicate the implementation of
Hyperkernel. Ultimately, Hyperkernel was placed in
EL2 and user processes were placed in EL1.

4.2 Virtual Memory Model
Initially, Hyperkernel was designed to execute in EL2
with the MMU disabled, simplifying Hyperkernel even
further by removing the need for kernel page tables. In
addition, when the MMU is disabled, isolation guar-
antees between the kernel and user space become sig-
nificantly easier to verify. Unfortunately, disabling the
MMU on ARM has the side effect of permanently
disabling the data cache while in EL2. Our experi-
ments, detailed in §6, analyze the performance impact
of disabling the MMU while in EL2. Consequently,
Hyperkernel was adapted to execute within EL2’s ad-
dress space, which is separate from EL1, EL0 and EL3.

In Hyperkernel, user space exclusively uses TTBR0_-
EL1, which provides a maximum of 248 virtual ad-
dresses. Any accesses to virtual memory that are above
the TTBR0_EL1 region trap into Hyperkernel. User
processes can modify their page tables by using a set of
hypercalls provided by Hyperkernel. Any direct write
of TTBR0_EL1 is trapped into Hyperkernel to prevent
user processes from violating isolation between both
the kernel and other processes.

Hyperkernel user processes are aware that they do
not have access to portions of their address space. In
contrast, a virtual machine expects full control over all
virtual addresses. Typically a hypervisor provides this
abstraction through stage 2 translations. Hyperkernel
disables stage 2 address translation altogether, since
it controls EL1 virtual memory through page map-
ping syscalls. Some hypervisor virtualization duties
rely on stage 2 translation, such as emulation of the
GIC MMIO interface and access to most I/O devices.

4



Hyperkernel restricts access to the these regions of
memory by refusing to map any virtual pages on top
of these MMIO interfaces.

4.3 TLB
Since ARM TLBs support entry matching using the
current exception level, a transition from user space
into the kernel does not require a TLB flush. In addi-
tion, Hyperkernel takes advantage of ASIDs by man-
aging an ASID for every process. Although ASIDs
were originally designed to identify user processes in
EL0, they can also be used to identify user processes in
Hyperkernel because they are forced to use TTBR0_-
EL1 exclusively. When a specific process is scheduled
on a CPU, TTBR0_EL1 is updated with the correct
ASID.

4.4 Interrupts
Hyperkernel configures the system to route all phys-
ical interrupts to EL2. When Hyperkernel is notified
of an interrupt, it determines if the interrupt should be
signaled to a user process in EL1. If the final destina-
tion is a process in EL1, then it adds the interrupt to
a list of pending interrupts for that process, otherwise
Hyperkernel handles the interrupt directly. Just before
a process is scheduled its pending interrupts are for-
warded to the vGIC, which generates virtual interrupts
when the processor returns to EL1. Handling a virtual
interrupt in a Hyperkernel user process is no different
than handling an interrupt in a typical OS.

4.5 Timers
A user processes view of physical time can advance
significantly between the execution of two instructions.
In contrast, a virtual machine requires timers that will
only advance when one of its vCPUs is scheduled.
Hyperkernel takes advantage of this by removing the
virtual timer logic, which saves on the cost of transi-
tions into EL2. In addition, user processes are given full
control of the EL1 timer, which removes the timer em-
ulation logic required in Hyperkernel. The EL2 timer
is used by the Hyperkernel scheduler to preempt pro-
cesses.

5. Implementation
This section outlines the effort of porting Hyperkernel
from x86 to ARM. During the port, we focused on
reusing many of the mechanisms already present in the
original version of Hyperkernel. Fortunately, some as-

Process State

State (Zombie, etc) Kernel Stack
Saved CPU State Process ID
Open File Descriptors Pending Interrupts
IPC Information

Figure 3. The information stored for every process in
Hyperkernel on both x86 and ARM.

pects of the x86 and ARM architecture share similari-
ties, allowing significant code reuse between versions.

Page table management. The x86 page table man-
agement code was significantly reused for the ARM
version of Hyperkernel. This is because both versions
of Hyperkernel use 4KB pages, 48 bit virtual addresses,
and 4 levels of virtual address translation. Functions
that walked the page tables, inserted new page table en-
tries, or allocated new pages only needed small changes
in order to work on ARM. The largest change to these
functions was factoring out the formatting and setting
of permissions within page table entries. Fortunately,
the permissions for both descriptor formats were simi-
lar and conversion from one format to another merely
required rearranging the permissions.

Process management. Figure 3 summarizes the in-
formation required to maintain a process in Hyperkernel
on both x86 and ARM. The field that differs substan-
tially between x86 and ARM is the saved CPU state.
On x86, the saved CPU state is stored within a virtual
machine control structure (VMCS), while on ARM the
saved CPU state is simply a struct that holds the infor-
mation detailed in Figure 4. During a context switch,
hypercall, or trap into EL2, software copies the re-
quired state into the saved CPU state struct. During
a return into EL1, this state is copied back to the CPU.

Drivers and components. Many Hyperkernel func-
tionalities required new drivers and components to
communicate with ARM hardware. For example, SMP
multicore management operations such as enabling
a CPU core are achieved through a power manage-
ment system called the power state coordination inter-
face (PSCI). A system with EL3 implemented exposes
a PSCI conduit through synchronous exceptions into
EL3. Hyperkernel generates PSCI calls to EL3, which
is expected to perform the necessary MMIO commu-
nication to enable or disable CPU cores. Other com-
ponents implemented include a PL011 UART driver

5



Action NR State Saved

Context Switch 31 GP Integer Registers (x0-x30)
4 EL1 and EL0 PC/SP
5 EL1 Exception Information
6 EL1 MMU Information
1 EL1 System Configuration
1 EL1 Timer Configuration
4 EL1 and EL0 Thread Identification
15 GIC State

Hypercall 31 GP Integer Registers (x0-x30)
4 EL1 and EL0 PC/SP

Figure 4. The state saved during either a context
switch or hypercall in Hyperkernel. The number of reg-
ister reads/writes in each group is shown in the NR col-
umn.

for serial communication, a simple timer module for
scheduling, and a GICv3 driver for interrupt manage-
ment.

5.1 Development Effort
The porting of the Hyperkernel core and a basic init
process took 5 person-months and added 3197 SLOC
to Hyperkernel. Much of the time and effort porting
Hyperkernel to ARM was spent studying the x86 and
ARM architectures and their various peripheral de-
vices. Currently Hyperkernel on ARM is missing a
complete implementation of user space, which is left
as future work.

5.2 Hyperkernel on ARM Hardware
During development we utilized QEMU, a full system
hardware emulator, to test the execution of Hyperkernel
on a virtual ARM system. A new bootloader and small
modifications to Hyperkernel were required in order
to run Hyperkernel on real hardware. This section de-
tails the process of running Hyperkernel on a HiSilicon
HiKey board that contains a Cortex A53 CPU.

QEMU to HiKey The virtual ARM boards emulated
by QEMU provided an accurate representation of real
ARM hardware. The only modification to Hyperkernel
was a change to the base address of DRAM and where
Hyperkernel was loaded into physical memory during
bootup. This was required because the QEMU virtual
board placed DRAM at a different starting address than
the HiKey board.

Bootloader Hyperkernel spoofs itself as a Linux ker-
nel image in order for QEMU to recognize and load

Hyperkernel into memory during bootup. When run-
ning Hyperkernel on real hardware, we required a
compatible bootloader to perform a similar operation.
Unfortunately, the current ARM version of the GRUB
bootloader only supports Linux kernels that contain an
EFI stub. Instead of adding an EFI stub to Hyperkernel,
we decided to create a custom EFI bootloader us-
ing the Linaro EFI developer toolchain. This custom
bootloader simply copies Hyperkernel into the start of
DRAM, loads a device tree blob adjacent to it, and
jumps to the beginning of Hyperkernel.

6. Experiments and Results
The current state of Hyperkernel on ARM includes the
kernel and a simple implementation of the init pro-
cess. In order to run a full benchmark to compare the
ARM and x86 versions of Hyperkernel a complete user
space implementation is required. Instead of creating
a full benchmark that measures the impact of porting
Hyperkernel to ARM, we decided to measure the side
effects of a few design decisions of Hyperkernel on
ARM using a microbenchmark.

A typical ARM operating system interfaces with
user proceses through system calls generated by an svc

instruction. Since Hyperkernel runs in EL2 instead of
EL1, a user process must use an hvc instruction (hy-
percall) to request a more privileged operation from
Hyperkernel. This section analyzes the performance
implications of using hypercalls in Hyperkernel instead
of system calls. In addition, we evaluate the perfor-
mance impacts of enabling and disabling the MMU,
data cache, and instruction cache to determine if exe-
cution in EL2 is viable when the MMU is disabled.

We performed our experiments with a microbench-
mark adapted from Dune [3] that measures the number
of cycles required to execute a system call (svc/eret
pair), and a hypercall hvc/eret pair). This microbench-
mark executed as the init process on an early version
of Hyperkernel on the HiKey Cortex-A53 CPU. The
results are shown in Figure 5: when all three features
are enabled, a hypercall and system call require iden-
tical amounts of cycles. It is plausible that the svc and
hvc pathways are reused within the microarchitecture,
because exception routing is a common operation. In
addition, this result indicates that the performance dif-
ferences measured between hypercalls and system calls
in past work is caused by the saving of extra state only.

6



MMU D Cache I Cache syscall hypercall

Disabled Disabled Disabled 2200 904
Disabled Disabled Enabled 568 48
Enabled Disabled Disabled 1727 658
Enabled Disabled Enabled 40 36
Enabled Enabled Disabled 1695 659
Enabled Enabled Enabled 36 36

Figure 5. Cycle counts of system calls and hypercalls
on an ARM Cortex A53. Each result averages 50 mil-
lion trials.

The first iteration of Hyperkernel on ARM disabled
the MMU when in EL2 in an effort to remove the in ker-
nel virtual memory management. Unfortunately, when
the ARM MMU is disabled, the data cache is perma-
nently disabled because the cacheability of memory is
stored within page table entries. The same is not true of
the instruction cache, which can still be enabled when
the MMU is disabled. Our results demonstrate that the
instruction cache has a significant effect on the perfor-
mance of both a hypercalls and syscalls. The lack of
performance impact when disabling the data cache can
be explained by the absense of data accesses between
the pairs of instructions benchmarked. When data ac-
cesses are inserted between the pairs, the number of
cycles increases in magnitude similar to when the in-
struction cache is disabled. After these measurements
we redesigned Hyperkernel to enable the MMU after
the creation of a simple identity mapping.

Recent work has shown that a hypercall on x86 can
take upwards of 800 cycles on recent microarchitec-
tures; much more expensive than a 70 cycle syscall [4].
Our results indicate that a hypercall on ARM could be
consistently faster than a hypercall on x86 if enough
optimizations are applied to the transitions into EL2.
Measuring the cost of a full hypercall in Hyperkernel is
planned as future work.

7. Conclusion
This paper presented the porting of Hyperkernel, an
x86 kernel, to the ARMv8-A architecture and the var-
ious design challenges faced when shaping it for the
ARM programming model. We presented core aspects
of the ARM architecture and how they were utilized
within Hyperkernel. Our experience shows that the
ARM version of Hyperkernel opens the possibility of
optimizing both the transitions into Hyperkernel and
the abstractions it provides to user processes. We be-

lieve that ARM provides a solid foundation for devel-
opers to create operating systems that are verified using
push-button verification.

References
[1] ARM. ARM Architecture Reference Manual ARMv8-A

DDI0487A, 2015.
[2] ARM. ARM Generic Interrupt Controller Architecture

Specification IHI0069C, 2016.
[3] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Maz-

ières, and C. Kozyrakis. Dune: Safe user-level access
to privileged CPU features. In Proceedings of the 10th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 335–348, Hollywood, CA, Oct.
2012.

[4] E. Bugnion, J. Nieh, and D. Tsafrir. Hardware and
software support for virtualization. Morgan & Claypool,
2017.

[5] C. Dall and J. Nieh. KVM/ARM: The design and im-
plementation of the Linux ARM hypervisor. In Proceed-
ings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS), pages 333–347, Salt Lake City,
UT, Mar. 2014.

[6] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the
15th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 251–266, Copper Mountain, CO,
Dec. 1995.

[7] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M.
Briceño, R. Hunt, D. Mazières, T. Pinckney, R. Grimm,
J. Jannotti, and K. Mackenzie. Application performance
and flexibility on exokernel systems. In Proceedings of
the 16th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 52–65, Saint-Malo, France, Oct.
1997.

7


	Introduction
	Related work
	ARM Architecture Overview
	Exception levels
	Virtual Memory Model
	TLB
	Interrupts
	Timers

	ARM Hyperkernel Design
	Exception Levels
	Virtual Memory Model
	TLB
	Interrupts
	Timers

	Implementation
	Development Effort
	Hyperkernel on ARM Hardware

	Experiments and Results
	Conclusion

