
Technical Report UW-CSE-2019-11-01

Developing security monitors on RISC-V
Case studies on HiFive Unleashed

LUKE NELSON and XI WANG, University of Washington

This technical report documents ways of using hardware protection mechanisms afforded by RISC-V to develop
security monitors. As case studies, we examine three publicly available security monitors: CertiKOSs and
Komodos from the Serval project [4]; and Keystone [3]. The security monitors target the HiFive Unleashed
RISC-V development board. We also document hardware issues we have encountered, and their mitigations.

1 INTRODUCTION
The security monitors examined by this technical report target the HiFive Unleashed development
board, which is based on the FU540-C000 SoC [5]. It includes five 64-bit RISC-V cores: one E51
core and four U54 cores. The E51 core implements two privilege levels, machine mode (M-mode)
and user mode (U-mode), and the RV64I base integer instruction set with extensions “M” for
integer multiplication and division, “A” for atomic instructions, and “C” for compressed instructions
(RV64IMAC). In addition to the privilege levels and extensions supported by the E51 core, the
U54 core implements supervisor mode (S-mode), and the “F” and “D” extensions for single- and
double-precision floating point operations, respectively (RV64IMAFDC).
Figure 1 shows an overview of the examined security monitors. M-mode on the U54 core is

appropriate for running the security monitors for the following reasons. First, since M-mode is
the most privileged mode, running a security monitor in M-mode avoids the need to trusting
lower-level software. Second, only the U54 core supports S-mode,which facilitates running an OS
kernel or an enclave. Lastly, because the security monitors we study do not support multicore
execution, they put all but one core to sleep upon booting.

process process process

security monitor

app app

OS kernel
enclave enclave

security monitorM-mode

S-mode

U-mode

(a) CertiKOSs (b) Komodos and Keystone

Fig. 1. Security monitors on RISC-V.

2 PROTECTION MECHANISMS
The RISC-V ISA specification [7] describes hardware protection mechanisms that allow M-mode
to isolate S- and U-mode execution. Below we briefly review two such mechanisms for physical
memory isolation that are used by the security monitors.

Physical Memory Protection (PMP). PMP is a memory protection mechanism that allows M-mode
to create and assign permissions to contiguous physical memory regions. PMP is configured by
M-mode through two sets of registers. The PMP address registers pmpaddr0–pmpaddr15 specify
the physical addresses of PMP regions. The PMP configuration entries 0–7 are packed in the
PMP configuration register pmpcfg0, and PMP configuration entries 8–15 in pmpcfg2. The PMP



2 Luke Nelson and Xi Wang

configuration entries specify physical memory access privileges, R (read), W (write), and X (execute),
and the address-matching mode for PMP regions. The PMP unit on the U54 core supports only 8
PMP regions: writes to registers pmpaddr8–pmpaddr15 and pmpcfg2 are ignored by the hardware.
PMP region addresses are interpreted in one of four ways, depending on the mode set by the

corresponding configuration entry. The four modes are OFF (disabled), TOR (top of range), NA4
(naturally aligned four-byte region), and NAPOT (naturally aligned power-of-two region of 8 bytes
or more). If PMP configuration entry i selects TOR, the entry specifies a region using both the
preceding and the associated PMP address registers [pmpaddri−1, pmpaddri ) for i > 0, regardless of
PMP configuration entry i − 1; or [0, pmpaddri ) for i = 0.

For any memory access in S- or U-mode, the CPUmatches the physical address using PMP entries
in the order from 0 to 15, with a lower-numbered entry taking a higher priority. The first PMP
entry that matches the address determines whether the access is permitted using access privileges.
If none match or the access is not fully contained within a single PMP region, the access fails. PMP
entries can also be configured to enforce permissions for M-mode accesses, however, we do not use
this feature as we assume M-mode can access any physical address.

Trap Virtual Memory (TVM). TVM allowsM-mode to limit modifications to page tables by S-mode.
Setting the TVM bit in the mstatus register traps accesses to the satp register (which holds the
physical address of the page-table root) and execution of the sfence.vma instruction in S-mode.

3 CASE STUDIES

monitor initrd process1 process2 . . . processi . . .

PMP3 : TOR RWX

PMP2 : OFF ---

PMP1 : TOR R-X

PMP0 : OFF ---

Fig. 2. Physical memory layout in CertiKOSs (processi is the currently running process).

Process isolation using PMP. CertiKOSs [4: §6.2] is a RISC-V port of the publicly available unipro-
cessor version of CertiKOS described by Costanzo et al. [1]. Each process runs in S-mode and
can access a contiguous memory region with a designated quota. To enforce the memory quota,
CertiKOSs uses PMP to isolate memory for each process. It configures two PMP regions (Figure 2):

• A TOR region for user bootstrapping code (initrd), with RX permissions.
• A TOR region for the currently running process, with RWX permissions.

This configuration allows the process to access its own memory while preventing it from
accessing the memory of other processes or the monitor. The process sets up its own page table
and handles page faults in S-mode, without invoking the monitor.

Software enclaves using PMP and TVM. Komodos [4: §6.3] is a RISC-V port of the unverified
version of Komodo [2]. It supports running a set of enclaves in S-mode, along with an untrusted
OS. To enforce enclave isolation, Komodos uses PMP to isolate enclave memory from the OS and
uses page tables to isolate enclaves from each other. It configures two PMP regions (Figure 3):

• A TOR region for shared memory, with RWX permissions.
• A TOR region for enclave memory, with RWX permissions during enclave execution only.



Developing security monitors on RISC-V 3

monitor enclave memory shared memory

PMP3: TOR RWX

PMP2: OFF ---

PMP1: TOR RWX

PMP0: OFF ---

(a) PMP configuration for enclave execution.

monitor enclave memory shared memory

PMP3: TOR RWX

PMP2: OFF ---

PMP1: TOR ---

PMP0: OFF ---

(b) PMP configuration for OS execution.

Fig. 3. Physical memory layout in Komodos .

To enter an enclave from the OS, Komodos sets TVM to prevent the enclave from changing the
page-table root, and enables the PMP region for enclave memory to allow the enclave to access its
own private memory. The enclave’s page table prevents the enclave from accessing the memory
of other enclaves or modifying its page-table pages. To exit an enclave to the OS, Komodos clears
TVM and disallows access to the PMP region for enclave memory.

Software enclaves using PMP. Keystone [3] is another software enclave system on RISC-V. Unlike
Komodos , it uses only PMP for enclave isolation. It configures the following PMP regions (Figure 4):

• A high-priority region that disallows access to the monitor memory.
• For each enclave, a secure region with RWX permissions during that enclave’s execution and
no permissions otherwise.

• A low priority region with RWX permissions that allows access to shared pages.
These PMP regions may be configured using either NAPOT or TOR. The number of enclaves

supported by the system is limited by the number of available PMP entries (registers). Given 8 PMP
entries on the U54, Keystone supports up to 4 enclaves (using NAPOT) or 2 enclaves (using TOR).
Each enclave has a secure region that contains memory private to that enclave, and a shared

region it can use to communicate with the untrusted OS. Keystone ensures that the secure regions
do not overlap with other secure regions or the monitor itself. During OS execution, the secure
region of each enclave is set to prohibit access; the shared region is set to allow access to every
address not prohibited by any higher-priority region. To run an enclave, Keystone allows access to
the corresponding secure region, and modifies the bounds of the shared region to allow access only
to the range granted by the OS.

4 PMP PERFORMANCE
The U54 core caches the results of PMP permission checks in the translation lookaside buffer (TLB),
similar to how virtual address translations are cached. The simplest case is when a PMP region is
aligned to virtual page boundaries, as the PMP permission checks can be cached together with the
permission checks from the page table in a single entry. The U54 core, however, also supports PMP
regions that are smaller than one page, or not aligned to page boundaries. Such regions, called
inhomogeneous regions, cannot be cached in regular TLB entries which cover aligned pages. To



4 Luke Nelson and Xi Wang

monitor enclave0 enclave1

PMP7: TOR RWX

PMP6: OFF ---

PMP5: TOR RWX

PMP4: OFF ---

PMP3: TOR ---

PMP2: OFF ---

PMP1: TOR ---

PMP0: OFF ---

(a) PMP configuration for enclave execution (enclave1 is the currently running enclave).

monitor enclave0 enclave1

PMP7: TOR RWX

PMP6: OFF ---

PMP5: TOR ---

PMP4: OFF ---

PMP3: TOR ---

PMP2: OFF ---

PMP1: TOR ---

PMP0: OFF ---

(b) PMP configuration for OS execution.

Fig. 4. Physical memory layout in Keystone (using TOR).

understand the performance impact of use of inhomogeneous regions, we communicated with CPU
developers and learned that the U54 core has only a single, dedicated TLB entry specifically for
such regions.
To test our understanding of this, we conducted an experiment that measures the number of

TLB misses incurred by use of inhomogeneous PMP regions. The test runs in S-mode with paging
enabled; it alternates 1-byte accesses two page-aligned addresses in a loop that runs 212 times.
The two addresses are each covered by a separate PMP region. We run the test code under three
different PMP configurations for these regions.
(1) Two 4 KiB regions.
(2) One 4 KiB region, and one 8-byte (inhomogeneous) region.
(3) Two 8-byte (inhomogeneous) regions.
The first configuration incurs 2 TLB misses because each access can be cached in a regular TLB

entry. The second configuration also incurs 2 TLB misses because the access to the inhomogeneous
region can be cached in the specialized TLB entry. The third configuration incurs a number of
misses proportional to the number of loop iterations (2 × 212 in this case), because the single
specialized entry for inhomogeneous regions thrashes between both regions.

These experimental results confirm that the U54 has only one TLB entry to cache inhomogeneous
PMP permission checks. As performance will degrade with multiple such regions, we suggest to
avoid using them. Note that this may be required by some CPUs that do not support inhomogeneous
PMP regions (e.g., the U74 core [6]).



Developing security monitors on RISC-V 5

5 CPU BUGS
Superpages and PMP. The U54 MMU supports superpages up to 1 GiB; our initial prototypes

used such superpages to simplify page table construction. We observed that accesses to superpages
trigger PMP permission exceptions when the PMP region is smaller than the superpage, even
if the addresses involved in the access are all allowed by the PMP region. We confirmed with
hardware developers that this is an MMU bug and will be fixed in the next hardware revision. As a
workaround, we use only 4 KiB pages, which do properly compose with PMP.

Performance counters. The U54 core implements a set of hardware performance counters (e.g.,
cycle). The counter-enable registers, mcounteren and scounteren, control whether S- and U-mode
can access performance counters, respectively. Since these performance counters may leak infor-
mation, we initially attempted to disable their accesses in S-mode by clearing the corresponding
bits in mcounteren. However, we observed that the U54 core ignores mcounteren and does not raise
any exception for such accesses. To work around this issue, we changed the context-switching
code to save and restore performance counters.

ACKNOWLEDGMENTS
We thank Andrew Waterman and Jim Wilson for answering our questions about the CPU bugs.

REFERENCES
[1] David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-End Verification of Information-Flow Security for C

and Assembly Programs. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Santa Barbara, CA, 648–664.

[2] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017. Komodo: Using verification to
disentangle secure-enclave hardware from software. In Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP). Shanghai, China, 287–305.

[3] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste Asanović. 2019. Keystone: An Open Framework
for Architecting TEEs. https://arxiv.org/abs/1907.10119.

[4] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang. 2019. Scaling symbolic
evaluation for automated verification of systems code with Serval. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP). Huntsville, Ontario, Canada, 225–242.

[5] SiFive. 2018. SiFive FU540-C000 Manual, v1p0. https://www.sifive.com/boards/hifive-unleashed.
[6] SiFive. 2019. SiFive U74 Manual, v19.08p0. https://www.sifive.com/cores/u74.
[7] Andrew Waterman and Krste Asanović (Eds.). 2019. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture.

RISC-V Foundation.

https://arxiv.org/abs/1907.10119
https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/cores/u74

	Abstract
	1 Introduction
	2 Protection mechanisms
	3 Case studies
	4 PMP performance
	5 CPU bugs
	References

