
Hyperkernel: Push-Button
Verification of an OS Kernel

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,

James Bornholt, Emina Torlak, and Xi Wang

The OS Kernel is a critical component

•Essential for application correctness and security

•Kernel bugs can compromise the entire system

Kernel

App App App

Formal verification: high correctness assurance

•Write a spec of expected behavior

•Prove that implementation matches the spec

•Goal: How much can we minimize the proof burden

IronClad

Formal verification: high correctness assurance

•Write a spec of expected behavior

•Prove that implementation matches the spec

•Goal: How much can we minimize the proof burden

IronCladProof effort:
11 person years

Our result: Hyperkernel

•Unix-like OS kernel: based on xv6

•Fully automated verification using the Z3 solver
•Functional correctness of system calls

•Crosscutting properties (e.g., process isolation)

•Limitations:
•Uniprocessor

•Initialization & glue code unverified

Designing Hyperkernel for proof automation

Xv6

•Syscall semantics are loop-y and
require writing loop invariants

•Kernel pointers difficult to
reason about

•C is difficult to model

Hyperkernel

•Finite interface

•Separate user and kernel spaces &
identity mapping for the kernel

•Verify LLVM intermediate
representation (IR)

Designing Hyperkernel for proof automation

Xv6

•Syscall semantics are loop-y and
require writing loop invariants

•Kernel pointers difficult to
reason about

•C is difficult to model

Hyperkernel

•Finite interface

•Separate user and kernel spaces &
identity mapping for the kernel

•Verify LLVM intermediate
representation (IR)

Designing Hyperkernel for proof automation

Xv6

•Syscall semantics are loop-y and
require writing loop invariants

•Kernel pointers difficult to
reason about

•C is difficult to model

Hyperkernel

•Finite interface

•Separate user/kernel spaces and
use identity mapping for kernel

•Verify LLVM intermediate
representation (IR)

Designing Hyperkernel for proof automation

Xv6

•Syscall semantics are loop-y and
require writing loop invariants

•Kernel pointers difficult to
reason about

•C is difficult to model

Hyperkernel

•Finite interface

•Separate user/kernel spaces and
use identity mapping for kernel

•Verify LLVM intermediate
representation (IR)

Designing Hyperkernel for proof automation

Xv6

•Syscall semantics are loop-y and
require writing loop invariants

•Kernel pointers difficult to
reason about

•C is difficult to model

Hyperkernel

•Finite interface

•Separate user/kernel spaces and
use identity mapping for kernel

•Verify LLVM intermediate
representation (IR)

Outline

•Verification workflow

•Finite interface design

•Demo

•Evaluation & lessons learned

Outline

•Verification workflow

•Finite interface design

•Demo

•Evaluation & lessons learned

Overview of verification workflow

Syscall Implementation

Overview of verification workflow

Syscall Implementation

State Machine Specification

pre

newold

Overview of verification workflow

Syscall Implementation

State Machine Specification

pre

newold

Overview of verification workflow

Syscall Implementation

State Machine Specification

pre

newold

Overview of verification workflow

Syscall Implementation

State Machine Specification

pre

newold

Overview of verification workflow

Syscall Implementation

State Machine Specification

pre

newold

Overview of verification workflow

Syscall Implementation

State Machine Specification

Verifier

LLVM

pre

newold

Overview of verification workflow

Syscall Implementation

State Machine Specification

Verifier

Bug

Counterexample

old

LLVM

pre

newold

Syscall Implementation

Verifier

Bug

Counterexample

old

Declarative Specification

P

LLVM

State Machine Specification

pre

newold

Syscall Implementation

State Machine Specification

Verifier

Bug

Counterexample

old

Declarative Specification

P

LLVM

pre

newold

Syscall Implementation

Verifier

Counterexample

old

LLVM

State Machine Specification

pre

newold

Bug

Declarative Specification

P

Cross-cutting properties:
•Correctness of reference counters
•Scheduler safety property
•Process Isolation

Syscall Implementation

Verifier

Counterexample

old

LLVM

State Machine Specification

pre

newold

Bug

Cross-cutting properties:
•Correctness of reference counters
•Scheduler safety property
•Process Isolation

For any virtual address in a process p,
if the virtual address maps to a page

the page must be exclusively owned by p.

Declarative Specification

P

Syscall Implementation

Verifier

Counterexample

old

LLVM

State Machine Specification

pre

newold

Bug

Cross-cutting properties:
•Correctness of reference counters
•Scheduler safety property
•Process Isolation

For any virtual address in a process p,
if the virtual address maps to a page

the page must be exclusively owned by p.

Declarative Specification

P

Syscall Implementation

State Machine Specification

Verifier

Bug

Counterexample

old

Declarative Specification

P

LLVM

pre

newold

Syscall Implementation

State Machine Specification

Verifier

LLVM

Bug

Counterexample

old

Declarative Specification

P

OK

Kernel Image

pre

newold

Outline

•Verification workflow

•Finite interface design

•Demo

•Evaluation & lessons learned

Verification through symbolic execution

•Goal: Minimize proof burden
•No manual proofs or code annotations

•Symbolic execution
•Fully automated technique, used in bug-finding

•Full functional verification if program is free of loops and state is finite

•Feasible when units of work sufficiently small for solving

•Hyperkernel approach: Finite interface design

Overview of techniques

•Safely push loops into user space

•Explicit resource management

•Decompose complex syscalls

•Validate linked data structures

•Smart SMT encodings

Overview of techniques

•Safely push loops into user space

•Explicit resource management

•Decompose complex syscalls

•Validate linked data structures

•Smart SMT encodings

The sbrk() system call

User space
virtual address space

brk

void * sbrk (intptr_t increment)

The sbrk() system call

increments the programs data
space by increment bytes

User space
virtual address space

brk

void * sbrk (intptr_t increment)

increment

The sbrk() system call

User space
virtual address space

brk

void * sbrk (intptr_t increment)

increments the programs data
space by increment bytes

The sbrk() system call

Goal: Redesign sbrk(); ensuring process isolation.

User space
virtual address space

brk

void * sbrk (intptr_t increment)

increments the programs data
space by increment bytes

The sbrk() system call: Dealing with loops

void * sbrk (intptr_t increment)

The sbrk() system call: Dealing with loops

void * sbrk (intptr_t increment)

The sbrk() system call: Dealing with loops

void * sbrk (intptr_t increment)

page table root

entry
4K page

The sbrk() system call: Dealing with loops

void * sbrk (intptr_t increment)

void * sbrk_one_page ()

page table root

entry
4K page

The sbrk() system call: Decomposition

page table root

entry
4K page

void * sbrk_one_page ()

The sbrk() system call: Decomposition

PML4 table

entry
4K page

page directory
page table

entry

page directory

entry

page table

entry

void * sbrk_one_page ()

The sbrk() system call: Decomposition

PML4 table

entry
4K page

page directory
page table

entry

page directory

entry

page table

entry

alloc_pdpt (é)alloc_pd (é)alloc_pt (é)alloc_frame (é)

void * sbrk_one_page ()

The sbrk() system call: Decomposition

PML4 table

entry
4K page

page directory
page table

entry

page directory

entry

page table

entry

alloc_pdpt (é)alloc_pd (é)alloc_pt (é)alloc_frame (é)

void * sbrk_one_page ()

The sbrk() system call: Decomposition

int alloc_pdpt (int pml4, size_t index)

int alloc_pd (int pdpt , size_t index)

int alloc_pt (int pd, size_t index)

int alloc_frame (int pt , size_t index)

The sbrk() system call: Explicit allocation

App Kernel

Search for
free page

alloc

page#

1

2

3

The sbrk() system call: Explicit allocation

App Kernel
alloc, page#

success/fail

•Kernel keeps track of per-page metadata: owner/type

•User space searches for free page; kernel validates

The sbrk() system call: Finite Interface

•Any composition of these system calls maintains isolation

int alloc_pdpt (int pml4, size_t index, int free_pn)

int alloc_pd (int pdpt , size_t index, int free_pn)

int alloc_pt (int pd, size_t index, int free_pn)

int alloc_frame (int pt , size_t index, int free_pn)

For any virtual address in a process p,
if the virtual address maps to a page

the page must be exclusively owned by p.

Implementation

Component Lines Languages

Kernel implementation 7,616 C, assembly

State-machine specification 804 Python

Declarative specification 263 Python

Verifier 2,878 C++, Python

User-space implementation 10,025 C, assembly

Outline

•Verification workflow

•Finite interface design

•Demo

•Evaluation & lessons learned

Demo

•Hyperkernel in action

•Catching a low-level bug
producing a stack trace

•Catching a process isolation bug
producing a visualized counterexample

Outline

•Verification workflow

•Finite interface design

•Demo

•Evaluation & lessons learned

What was the development effort?

•Write a state machine specification

•Relate LLVM data structures to
abstract specification state

•Write checks for the representation
invariants if needed.

What was the development effort?

•Adding and verifying a system call usually takes < 1 hour

•Write a state machine specification

•Relate LLVM data structures to
abstract specification state

•Write checks for the representation
invariants if needed.

Is the design effective for scalable verification?

•45 minutes on a single core machine

•15 minutes on an 8-core Intel i7

•Not sensitive to system parameters (e.g., number of pages)

•Design is effective for scalable verification

Conclusion

•Feasible to verify simple Unix-like OS kernel

•Automatic verification through symbolic execution
•Make interface finite

•Decompose complex system calls to scale verification

•Verifiability as a first-class system design concern

•http://locore.cs.washington.edu/hyperkernel

