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The OS Kernel is a critical component

•Essential for application correctness and security

•Kernel bugs can compromise the entire system

Kernel
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Formal verification: high correctness assurance

•Write a spec of expected behavior

•Prove that implementation matches the spec

•Goal: How much can we minimize the proof burden

IronClad
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Our result: Hyperkernel

•Unix-like OS kernel: based on xv6

•Fully automated verification using the Z3 solver
•Functional correctness of system calls

•Crosscutting properties (e.g., process isolation)

•Limitations: 
•Uniprocessor

•Initialization & glue code unverified



Designing Hyperkernel for proof automation

Xv6

•Syscall semantics are loop-y and 
require writing loop invariants

•Kernel pointers difficult to 
reason about

•C is difficult to model

Hyperkernel

•Finite interface

•Separate user and kernel spaces & 
identity mapping for the kernel

•Verify LLVM intermediate 
representation (IR)
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Verification through symbolic execution

•Goal: Minimize proof burden
•No manual proofs or code annotations

•Symbolic execution
•Fully automated technique, used in bug-finding

•Full functional verification if program is free of loops and state is finite

•Feasible when units of work sufficiently small for solving

•Hyperkernel approach: Finite interface design
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•Safely push loops into user space

•Explicit resource management

•Decompose complex syscalls

•Validate linked data structures

•Smart SMT encodings
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The sbrk() system call

Goal: Redesign sbrk(); ensuring process isolation.

User space 
virtual address space

brk

void * sbrk ( intptr_t increment)

increments the programs data 
space by increment bytes



The sbrk() system call: Dealing with loops

void * sbrk ( intptr_t increment)



The sbrk() system call: Dealing with loops

void * sbrk ( intptr_t increment )



The sbrk() system call: Dealing with loops

void * sbrk ( intptr_t increment )

page table root

entry
4K page



The sbrk() system call: Dealing with loops

void * sbrk ( intptr_t increment)

void * sbrk_one_page ()

page table root

entry
4K page



The sbrk() system call: Decomposition

page table root

entry
4K page

void * sbrk_one_page ()



The sbrk() system call: Decomposition

PML4 table

entry
4K page

page directory 
page table

entry

page directory 

entry

page table 

entry

void * sbrk_one_page ()



The sbrk() system call: Decomposition

PML4 table

entry
4K page

page directory 
page table

entry

page directory 

entry

page table 

entry

alloc_pdpt (é)alloc_pd (é)alloc_pt (é)alloc_frame (é)

void * sbrk_one_page ()



The sbrk() system call: Decomposition

PML4 table

entry
4K page

page directory 
page table

entry

page directory 

entry

page table 

entry

alloc_pdpt (é)alloc_pd (é)alloc_pt (é)alloc_frame (é)

void * sbrk_one_page ()



The sbrk() system call: Decomposition

int alloc_pdpt ( int pml4, size_t index)

int alloc_pd ( int pdpt , size_t index)

int alloc_pt ( int pd, size_t index)

int alloc_frame ( int pt , size_t index)



The sbrk() system call: Explicit allocation

App Kernel

Search for 
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The sbrk() system call: Explicit allocation

App Kernel
alloc, page#

success/fail

•Kernel keeps track of per-page metadata: owner/type

•User space searches for free page; kernel validates



The sbrk() system call: Finite Interface

•Any composition of these system calls maintains isolation

int alloc_pdpt ( int pml4, size_t index, int free_pn )

int alloc_pd ( int pdpt , size_t index, int free_pn )

int alloc_pt ( int pd, size_t index, int free_pn )

int alloc_frame ( int pt , size_t index, int free_pn )

For any virtual address in a process p, 
if the virtual address maps to a page 

the page must be exclusively owned by p.



Implementation

Component Lines Languages

Kernel implementation 7,616 C, assembly

State-machine specification 804 Python

Declarative specification 263 Python

Verifier 2,878 C++, Python

User-space implementation 10,025 C, assembly
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Demo

•Hyperkernel in action

•Catching a low-level bug
producing a stack trace

•Catching a process isolation bug
producing a visualized counterexample
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•Write a state machine specification

•Relate LLVM data structures to
abstract specification state

•Write checks for the representation
invariants if needed.
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Is the design effective for scalable verification?

•45 minutes on a single core machine

•15 minutes on an 8-core Intel i7

•Not sensitive to system parameters (e.g., number of pages)

•Design is effective for scalable verification



Conclusion

•Feasible to verify simple Unix-like OS kernel

•Automatic verification through symbolic execution
•Make interface finite

•Decompose complex system calls to scale verification

•Verifiability as a first-class system design concern

•http://locore.cs.washington.edu/hyperkernel


