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Reusable symbolic evaluators are a key building block of solver-aided verification and synthesis tools. A
reusable evaluator reduces the semantics of all paths in a program to logical constraints, and a client tool uses
these constraints to formulate a satisfiability query that is discharged with SAT or SMT solvers. The correctness
of the evaluator is critical to the soundness of the tool and the domain properties it aims to guarantee. Yet
so far, the trust in these evaluators has been based on an ad-hoc foundation of testing and manual reasoning.

This paper presents the first formal framework for reasoning about the behavior of reusable symbolic
evaluators.We develop a new symbolic semantics for these evaluators that incorporates statemerging. Symbolic
evaluators use state merging to avoid path explosion and generate compact encodings. To accommodate a
wide range of implementations, our semantics is parameterized by a symbolic factory, which abstracts away
the details of merging and creation of symbolic values. The semantics targets a rich language that extends Core
Scheme with assumptions and assertions, and thus supports branching, loops, and (first-class) procedures. The
semantics is designed to support reusability, by guaranteeing two key properties: legality of the generated
symbolic states, and the reducibility of symbolic evaluation to concrete evaluation. Legality makes it simpler
for client tools to formulate queries, and reducibility enables testing of client tools on concrete inputs. We
use the Lean theorem prover to mechanize our symbolic semantics, prove that it is sound and complete with
respect to the concrete semantics, and prove that it guarantees legality and reducibility.

To demonstrate the generality of our semantics, we develop Leanette, a reference evaluator written in
Lean, and Rosette 4, an optimized evaluator written in Racket. We prove Leanette correct with respect to
the semantics, and validate Rosette 4 against Leanette via solver-aided differential testing. To demonstrate
the practicality of our approach, we port 16 published verification and synthesis tools from Rosette 3 to
Rosette 4. Rosette 3 is an existing reusable evaluator that implements the classic merging semantics, adopted
from bounded model checking. Rosette 4 replaces the semantic core of Rosette 3 but keeps its optimized
symbolic factory. Our results show that Rosette 4 matches the performance of Rosette 3 across a wide
range of benchmarks, while providing a cleaner interface that simplifies the implementation of client tools.
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1 INTRODUCTION

Symbolic evaluation is a core component of solver-aided tools, which automate program verification
and synthesis tasks by reducing them to satisfiability solving. These tools work by embedding an
interpreter for the tool’s source language into a host language that is equipped with a reusable
symbolic evaluator [Sen et al. 2015; Torlak and Bodik 2014; Uhler and Dave 2014]. When applied to
a source program and symbolic inputs, the embedded interpreter is executed by the host’s reusable
evaluator to produce a logical encoding of the program’s semantics. The tool then uses the resulting
encoding to express a verification or synthesis task as a logical satisfiability query, solved with a SAT
or SMT solver. This pipeline produces correct results if the tool generates the right query, and both
the evaluator and the solver are correct. In practice, tool developers focus on testing or verifying
their use of the symbolic evaluator [Weitz et al. 2017], and trust the evaluator and the solver to be
correct. The trust in solvers is based on decades of community investment in their testing [Winterer
et al. 2020], validation [Cruz-Filipe et al. 2017], and verification [Blanchette et al. 2017]. But the
trust in reusable evaluators rests on a weaker foundation of ad-hoc testing and manual inspection.
This paper presents the first formal framework for reasoning about the behavior of reusable

evaluators. We develop a new symbolic semantics for reusable evaluators, which we call Sc , and
we prove that it is sound and complete with respect to the underlying concrete semantics. The
framework targets a small but expressive language, λc , that extends Core Scheme [Flanagan et al.
1993] with assumptions and assertions. As such, λc includes the core features supported by existing
reusable evaluators: branching, loops, (first-class) procedures, and specification constructs. Our
symbolic semantics for λc incorporates state merging [Biere et al. 1999; Clarke et al. 2004, 2003],
which is key to generating small (polynomially sized) encodings. Unlike the classic merging seman-
tics [Biere et al. 1999; Clarke et al. 2004, 2003], which was developed for verification of loop-free
code, Sc is designed to be reused by a wide range of tools, on a wide range of programs. It maintains
strong invariants on the formulas that characterize the symbolic state, and on termination of
halted paths. The former simplifies the formulation of queries, and the latter ensures that symbolic
evaluation terminates as often as concrete execution on concrete inputs, which is vital for the
development and testing of client tools. We prove these reusability properties and the correctness
of Sc using the Lean theorem prover [de Moura et al. 2015].

Our framework aims to provide a general contract for implementing and validating reusable eval-
uators. To meet this goal, it must accommodate a wide range of implementations, which is uniquely
challenging for reusable evaluators. To see why, consider the toy verification query in Figure 1a. The
query verifies that the unsigned value of an n-bit integer x exceeds the number of 1’s in its binary
representation. Figure 1b shows the symbolic execution tree [Clarke 1976; King 1976] for this query
when n = 2. The tree captures all feasible concrete executions of our program, with the feasibility of
each branch decided by an SMT solver. Because of this feasibility check, all implementations of sym-
bolic execution will (in principle) generate an isomorphic tree. But reusable evaluators do not neces-
sarily call the solver during evaluation, so their behavior depends on their strategy for constructing
symbolic values, as illustrated in Figure 1c. If the evaluator deduces that right-shifting x two or more
times produces 0, it will terminate and produce a finite DAG. Otherwise, it will diverge, producing
an infinite DAG. A general semantics for reusable evaluators must account for all of these behaviors.

We address this challenge by defining Sc with respect to a symbolic factory, and proving that it
is partially correct with respect to the concrete semantics of λc . A symbolic factory is a parameter
to the semantics, consisting of functions that abstract away the details of creation, simplification,
and merging of symbolic values. Our framework specifies only what it means for these functions to
be sound; their implementation is otherwise opaque. For example, all outcomes shown in Figure 1c
can be produced by a sound factory. To account for non-termination, our correctness criterion
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1 (define (addbits x s)
2 (if (bvzero? x) ; If x = 0
3 s ; then s
4 (addbits ; else addbits
5 (bvlshr x (bv 1 n)) ; (x >>> 1)
6 (bvadd (bvand x (bv 1 n)) s)))) ; ((x & 1) + s).
7
8 (define (popcount x) ; Returns the number of 1 bits
9 (addbits x (bv 0 n))) ; in the n-bit bitvector x.
10
11 (define-symbolic x (bitvector n)) ; Symbolic n-bit bitvector.
12
13 (verify ; Verify that for every n-bit
14 (assert ; bitvector x, x ≥u (popcount x),
15 (bvuge x (popcount x)))) ; where ≥u is unsigned comparison.

(a) A toy program with a verification query.

д0 : x0 = 0
x1 : x0 >>> 1
д1 : x1 = 0
x2 : x1 >>> 1
д2 : x2 = 0

x 7→ x0, s 7→ 0 1

assert x0 ≥u 0
14

x 7→ x1, s 7→ 1
1

assert x0 ≥u 1
14

x 7→ x2, s 7→ 2
1

assert x0 ≥u 2
14

д0 ¬д0

д1 ¬д1

д2

(b) Symbolic execution tree for n = 2.
д0 : x0 = 0
x1 : x0 >>> 1
д1 : x1 = 0
r0 : ite(д1, 1, 2)
r1 : ite(д0, 0, r0)
x2 : x1 >>> 1
д2 : x2 = 0
r2 : ite(д2, 2, 3)
r3 : ite(д1, 1, r2)
r4 : ite(д0, 0, r3)
x3 : x2 >>> 1
д3 : x3 = 0
x4 : x3 >>> 1
д4 : x4 = 0
. . .

x 7→ x0, s 7→ 0 1

ret 7→ 0
3

x 7→ x1, s 7→ 1
1

ret 7→ 1
3

x 7→ 0, s 7→ 2
1

ret 7→ 2
3

ret 7→ r0

2

ret 7→ r1

2

assert x0 ≥u r1

14

д0 ¬д0

д1 ¬д1

x 7→ x0, s 7→ 0 1

ret 7→ 0
3

x 7→ x1, s 7→ 1
1

ret 7→ 1
3

x 7→ x2, s 7→ 2
1

x 7→ 0, s 7→ 3
1

ret 7→ 2
3

ret 7→ 3
3

ret 7→ r2

3

ret 7→ r3

2

ret 7→ r4

2

assert x0 ≥u r4

14

д0 ¬д0

д1 ¬д1

¬д2д2

• • •

x 7→ x0, s 7→ 0 1

ret 7→ 0
3

x 7→ x1, s 7→ 1
1

ret 7→ 1
3

x 7→ x2, s 7→ 2
1

ret 7→ 2
3

x 7→ x3, s 7→ 3
1

ret 7→ 3
3

x 7→ x4, s 7→ 4
1

ret 7→ 4
3

д0 ¬д0

д1 ¬д1

д2 ¬д2

д3 ¬д3

д4

. . .

(c) Symbolic evaluation DAGs for n = 2.

Fig. 1. A toy programwith a verification query (a), alongwith the symbolic execution tree (b) and symbolic eval-

uation DAGs (c) for this query. Nodes represent symbolic states. Edges represent guarded transitions between

states. Dotted edges denote omitted parts of the graph. Circled numbers refer to lines in the toy program.

specifies what it means for a reusable evaluator to produce a sound and complete result if the
evaluation terminates. All the DAGs shown in Figure 1c are correct according to our definition,
with the infinite one satisfying the definition trivially. For programs that are free of loops, our
semantics terminates and is totally correct with respect to all sound symbolic factories.

In addition to providing a general contract for reusable evaluators, our framework also aims to
expose a practical interface to their client tools. We identify two key properties of practical symbolic
evaluators, reducibility and legality, and we design our symbolic semantics so that every (correct)
implementation of its rules satisfies these properties.

Reducibility states that symbolic evaluation terminates on a given program and a fully concrete
input whenever the concrete semantics does so. This property is trivially satisfied by all symbolic
evaluators on loop-free programs, but only symbolic execution is designed to reduce to concrete
execution in the presence of loops. Our semantics integrates reducibility in its design as well,
by including a mechanism for abandoning halted paths as soon as possible. If an assertion or
assumption fails during symbolic evaluation, Sc requires the evaluator to abandon that path of
execution and propagate the failure upstream, similarly to how an exception is propagated in
concrete execution. This mechanism forces the evaluator to mirror the concrete semantics on fully
concrete inputs, which enables the testing of client tools (e.g., [Nelson et al. 2019, 2020]). Beyond
testing, this mechanism also enables the use of unwinding assertions [Clarke et al. 2004] to bound
loops in the presence of symbolic inputs (see, e.g., Figure 11 of [Torlak and Bodik 2013]).
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Legality simplifies the reuse of the evaluator’s output, which takes the form of symbolic states. In
all forms of symbolic evaluation, the symbolic state σ is characterized by two formulas, which the
client tools use to construct their queries. One encodes the assumptions, assumes(σ ), and the other
encodes the assertions, asserts(σ ), that have been made to reach the state σ . Intuitively, at least one
of these formulas should always be true, because there is no concrete execution in which both an
assumption and an assertion fail: the execution stops as soon as the first failure is reached. Yet in the
classic merging semantics, both formulas can become false, and client tools must account for this
when generating queries to avoid unsound results (see Section 4.3). To address this problem, our
semantics computes assumes(σ ) and asserts(σ ) so that every state σ generated during symbolic
evaluation is legal—i.e., every model makes at least one of the formulas true. With legality, client
tools can adopt a simple interpretation of symbolic states, inherent in symbolic execution, where
the validity of the formula assumes(σ ) → asserts(σ ) ensures the absence of errors.

To demonstrate the suitability of our framework for implementing and validating reusable evalua-
tors, we implementSc in two different languages. The first implementation is a reference interpreter
written in Lean, using a naïve symbolic factory. We use Lean to prove that the reference interpreter
implements Sc , and that it satisfies our correctness criterion. The second implementation is an
optimized evaluator for Rosette [Torlak and Bodik 2014], an existing language with a reusable
symbolic evaluator that hosts a variety of verification and synthesis tools. We refer to our new
evaluator as Rosette 4. Rosette’s default evaluator is based on the classic merging semantics, and
we refer to it as Rosette 3. Both evaluators use the same optimized symbolic factory. We validate
Rosette 4 against the Lean reference interpreter using differential testing, aided by an SMT solver.
We find that their behaviors match on 10,000 automatically generated test programs.

To evaluate the practical impact of using Sc , we port 16 published verification and synthesis tools
to Rosette 4, and compare the performance of the ported code to the original code built on top of
Rosette 3. Our benchmarks include the 15 tools studied in prior work [Bornholt and Torlak 2018]
on profiling the performance of reusable evaluators, and a recent system, Jitterbug [Nelson et al.
2020], for verifying and synthesizing just-in-time compilers in the Linux kernel. Our results show
that Rosette 4 is up to 14× faster than Rosette 3 across all benchmarks. The largest slowdown we
observe is 6×. On average, Rosette 4 is 10–20% faster than Rosette 3. Our evaluation also shows
that the legality-preserving interface exposed by Rosette 4 simplifies the implementation of our
most complex benchmark, Jitterbug. The original implementation of Jitterbug relied on custom
code for tracking assumptions, which required careful manual reasoning from the developers to
ensure its correctness. The ported implementation removes this custom code, leading to code that
is simpler and easier to understand.

In summary, this paper makes the following contributions:

• The first formal framework for reasoning about symbolic evaluation with merging. We
develop a new parametric merging semantics for an expressive core language; we prove that
our semantics is sound and complete; and we prove that it preserves legality and reducibility.

• A mechanization of this framework in the Lean theorem prover.
• Two implementations of our semantics, one in Lean and one in Rosette. We prove the Lean
implementation correct against our semantics, and we use solver-aided differential testing to
show the Rosette implementation matches the Lean implementation.

• An evaluation of the Rosette implementation on 16 tools for program verification and syn-
thesis developed in prior work. Our evaluation shows that this new implementation offers
better performance and a cleaner interface than Rosette’s default symbolic evaluator.

The rest of this paper is organized as follows. Section 2 discusses relatedwork. Section 3 introduces
our target language and illustrates basic applications of a reusable evaluator for this language.
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Section 4 presents the Sc merging semantics and compares it to the classic one. Section 5 states
our correctness criterion and shows that Sc satisfies it. Section 6 describes our Lean and Rosette
implementations of Sc , proofs, and differential testing results. Section 7 evaluates the utility and
performance of the Rosette implementation. Section 8 concludes the paper.

2 RELATEDWORK

Reusable symbolic evaluators [Sen et al. 2015; Torlak and Bodik 2014; Uhler and Dave 2014] are
designed to serve as platforms for building new tools. They reduce programs to constraints via
a combination of symbolic execution [Clarke 1976; King 1976] and bounded model checking [Biere
et al. 1999]. Symbolic execution encodes each path through a program separately, giving rise to a po-
tentially infinite symbolic execution tree. Each node in this tree is a symbolic state, which represents
a set of concrete program states, and each path represents a set of feasible concrete paths. Symbolic
execution is well-understood and has been formalized for imperative languages by recognizing
a correspondence between concrete and symbolic paths in the absence of state merging [Lucanu
et al. 2017]. Prior work [Nguyên et al. 2017] has also formalized symbolic execution for a language
that extends lambda calculus with numbers and contract constructs, similarly to our work.

Boundedmodel checking uses state merging to optimize symbolic execution of loop-free programs.
It merges symbolic states from different paths at each control-flow join, giving rise to a DAG that is
asymptotically smaller than the corresponding symbolic execution tree. Reusable evaluators extend
state merging to programs with loops. Because of this extension, their behavior falls outside of the
well-understood semantics for both bounded model checking, which assumes loop-free programs,
and symbolic execution, which assumes path-based evaluation.

In contrast to the classic merging semantics from bounded model checking, Sc targets programs
with loops, has a mechanized proof of soundness and completeness, and preserves legality and
reducibility. These features are designed to facilitate reuse. Legality helps developers reuse the
evaluator’s output to formulate custom queries, while reducibility helps developers test their tools.
For example, if a tool targets a language with a concrete reference implementation (e.g., a CPU
emulator for an ISA), reducibility makes it possible to test the tool’s modeling of the reference
semantics on concrete programs and inputs [Nelson et al. 2019].

GL [Swords 2010] is a related effort that provides verified implementations of symbolic evaluators
in the ACL2 theorem prover. GL is used to automate proofs within ACL2, and uses binary-decision
diagrams (BDDs) to represent symbolic expressions. Given some symbolic input, the symbolic
evaluator computes the truth value of a theorem as a BDD; if the BDD is the constant ‘true’, then
the theorem can be shown to hold via the correctness of the symbolic evaluator. GL includes two
methods of symbolic evaluation: one is a compiler that transforms concrete ACL2 functions into
symbolic equivalents, and the other is an interpreter over the ACL2 syntax. Both can be parame-
terized with a set of primitive functions, and both merge values at control-flow joins. This merging
algorithm is fixed in GL, as is the shape of the generated symbolic evaluation DAG. GL uses the
classic merging semantics and forces termination through the use of fuel.

Compared to GL, our framework is more general. First, Sc is defined with respect to a symbolic
factory interface, which is not restricted to a specific merging algorithm or underlying represen-
tation of symbolic values. Second, our target language is a strict superset of the GL language. To
support reuse, it includes first-class procedures, assumptions, and assertions, which are missing
from GL. Finally, Sc is formalized as a big-step operational semantics, via an inductive predicate
in Lean, so Sc evaluators do not need to use fuel to bound executions, whereas GL evaluators do.
The main disadvantage of a fuel-based semantics is that it forces implementations to track the
fuel value. This tracking can be difficult to implement for evaluators that are realized as a shallow
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Expression e F #t | #f | d | (λx .e) | x |

(o x1 . . . xn ) | (x1 x2) | (let (x e1) e2) |

(if x e1 e2) | (error) | (abort)

Variable x, y, . . .
Constant d ∈ D
Operator o ∈ O

Fig. 2. Syntax for λc , parameterized by the set of primitive values D and operators O . The literals #t and #f
stand for the boolean values ‘true’ and ‘false’, respectively.

embedding in a host language. Such an evaluator is based on the host’s unbounded interpreter, and
it usually has no easy way to bound the host interpreter’s behavior.

3 λc : A CORE LANGUAGE FOR REUSABLE SYMBOLIC EVALUATORS

This section presents λc , a core language for reusable symbolic evaluators. We begin by describing
the syntax, concrete semantics, and key features of λc . We then define what it means for a λc
program to execute normally and to be correct. Finally, we use these definitions to formalize the
angelic execution [Bodik et al. 2010] and verification queries for λc programs. Solving these queries
is the core computational task performed by solver-aided tools. For example, many synthesis tools
are based on the CEGIS algorithm [Solar-Lezama et al. 2006], which combines a demonic verifier
and an angelic guesser to solve synthesis queries. Sections 4 and 5 will describe how to solve these
queries using our symbolic semantics for λc .

3.1 The Syntax and Concrete Semantics of λc

Figure 2 shows the syntax of λc . The language extends Core Scheme [Flanagan et al. 1993] with the
ability to express assumptions and assertions using the (error) and (abort) expressions. Intuitively,
(error) is equivalent to asserting false, and (abort) is equivalent to assuming false. Combined with
conditionals, these constructs can be used to encode arbitrary assertions and assumptions over
λc expressions. Compared to Core Scheme, we place a light restriction on the syntax of λc by
requiring the arguments to procedures and primitive operators to be variables. This restriction
simplifies our formalization and proofs without sacrificing expressiveness. In particular, every
Core Scheme program can be converted to an equivalent λc program by using let expressions;
e.g., the application expression (e1 e2) becomes (let (x1 e1) (let (x2 e2) (x1 x2))). Like Core Scheme,
the syntax of λc is parameterized by the set of primitive values (D) and primitive operators (O).
Booleans and procedures are the only constants fixed by the language.

Figure 3 shows our big-step operational semantics for λc . The judgment ⟨e,E⟩ ⇓ r states that the
expression e produces the result r when evaluated in the environment E. The environment E ∈ E is
a finite map from variables to values. A valuev ∈ V is a boolean constant, a primitive constant from
the set D, or a closure that combines a procedure with an environment.1 The result r ∈ R is Ans(v)
if the evaluation terminates normally and produces the value v ; Err if it errors; and Abt if it aborts.

The evaluation rules for λc are standard. Atomic expressions terminate and produce the expected
results (Literal, Closure, Error, and Abort). Operator calls (CallOp) also terminate, producing
a value, aborting, or erroring. Their meaning is given by the function op : O → V ∗ → R, which
is a parameter to the semantics of λc . Unlike operator calls, procedure calls need not terminate.
In particular, a procedure call (x1 x2) evaluates both of its arguments and checks if x1 is bound
to a closure ⟨cl x , e,E1⟩. If not, the call errors (CallBad). Otherwise, the call evaluates e in the
environment E1[x 7→ v2], which binds x to the value of x2 in E1. The result of this evaluation, if
any, is the result of the call (Call). The rules for evaluating let expressions are similar (Let and
LetHalt). Finally, a conditional expression (if x e1 e2) evaluates to the result of e1 if x is not bound

1Our formalization also includes lists but we omit them from the presentation for brevity.
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Literal
v ∈ B ∪ D

⟨v, E ⟩ ⇓ Ans(v)
Closure

⟨(λx .e), E ⟩ ⇓ Ans(⟨cl x, e, E ⟩)
Variable

x ∈ dom(E)

⟨x, E ⟩ ⇓ Ans(E[x ])

CallOp
⟨x1, E ⟩ ⇓ Ans(v1) . . . ⟨xn, E ⟩ ⇓ Ans(vn )

⟨(o x1 . . . xn ), E ⟩ ⇓ op(o, v1, . . . , vn )
CallBad

⟨x1, E ⟩ ⇓ Ans(v1) ⟨x2, E ⟩ ⇓ Ans(v2) v1 < C

⟨(x1 x2), E ⟩ ⇓ Err

Call
⟨x1, E ⟩ ⇓ Ans(⟨cl x, e, E1 ⟩) ⟨x2, E ⟩ ⇓ Ans(v2) ⟨e, E1[x 7→ v2]⟩ ⇓ r

⟨(x1 x2), E ⟩ ⇓ r

Let
⟨e1, E ⟩ ⇓ Ans(v1) ⟨e2, E[x 7→ v1]⟩ ⇓ r

⟨(let (x e1) e2), E ⟩ ⇓ r
LetHalt

⟨e1, E ⟩ ⇓ r r = Err ∨ r = Abt

⟨(let (x e1) e2), E ⟩ ⇓ r

IfTrue
⟨x, E ⟩ ⇓ Ans(v) v , #f ⟨e1, E ⟩ ⇓ r

⟨(if x e1 e2), E ⟩ ⇓ r
IfFalse

⟨x, E ⟩ ⇓ Ans(v) v = #f ⟨e2, E ⟩ ⇓ r

⟨(if x e1 e2), E ⟩ ⇓ r

Error
⟨(error), E ⟩ ⇓ Err

Abort
⟨(abort), E ⟩ ⇓ Abt

E ∈ EF Variable↛ V v ∈ V F b | d | c b ∈ BF #t | #f c ∈ CF ⟨cl x, e, E ⟩ r ∈ RF Ans(v) | Err | Abt

Fig. 3. Concrete semantics for λc , parameterized by the set of primitive valuesD, operatorsO , and function op :
O → V ∗ → R, which gives meaning to the operators o ∈ O . The notation V ∗

stands for a sequence of values.

to #f, and otherwise, it evaluates to e2 (IfTrue and IfFalse). This semantics mirrors that of Core
Scheme: conditionals treat every value except #f as ‘true’.

While the syntax and semantics of λc are largely standard, one difference from prior work is worth
noting. The language places no restrictions on the use of variable names, so a program can include
free variables. Prior work on verified compilation [Chlipala 2010] prevented this by using parametric
higher-order abstract syntax. We intentionally allow programs to contain free variables, and treat
them as inputs to the program, supplied by the environment. The semantics gets stuck if the envi-
ronment does not bind a variable referenced during execution (Variable). Treating free variables as
inputs lets us introduce symbolic values into a program without having to include a dedicated syn-
tactic construct for creating symbolic values—and having to specify some concrete semantics for it.
The semantics of λc is deterministic (Theorem 1), like that of Core Scheme. Given a program

and an environment, it either diverges or produces a unique result. In the rest of this paper, when
we write about the result of a program, we mean this unique result, if one exists.

Theorem 1. Evaluating an expression from the same environment produces the same result:

∀e,E, r1, r2. (⟨e,E⟩ ⇓ r̂1 ∧ ⟨e,E⟩ ⇓ r̂2) → r̂1 = r̂2.

Example 1. To illustrate the syntax and semantics of λc , consider an instantiation λZ where D is the
set of all integers,O consists of the operators {−, <,=}, and op gives these operators their standard
meaning over integers. Using this instantiation, we can write the following program:
1 (let (z 0) ; z is zero
2 (let (abs (λ x . (let (b0 (< x z)) (if b0 (- x) x))))
3 (let (b1 (= y z))
4 (let (_ (if b1 (abort) #t)) ; assume y != 0
5 (let (y0 (abs y))
6 (let (b2 (< z y0))
7 (let (_ (if b2 #t (error))) ; assert |y| > 0
8 _)))))))

The program, eabs, asserts that the absolute value of its free variable y is positive, assuming that
y is not 0. The evaluation of this program gets stuck in all environments that have no binding for
y. We also have ⟨eabs, {y 7→ −1}⟩ ⇓ Ans(#t) and ⟨eabs, {y 7→ 0}⟩ ⇓ Abt.
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3.2 The Angelic Execution and VerificationQueries for λc

Given the syntax and semantics of λc , we define what it means for an execution to be normal
and for a program to be correct (Definitions 1 and 2). A program executes normally in a given
environment if it terminates and produces Ans(v) for some value v ∈ V . The execution errors if it
produces Err. If a program does not error in any environment E ∈ E, we say that it is correct with
respect to the input space defined by the set of environments E.

Definition 1 (Executions of λc programs). A program e evaluates normally in an environment

E iff ⟨e,E⟩ ⇓ Ans(v) for some value v ∈ V ; it errors iff ⟨e,E⟩ ⇓ Err; and it aborts iff ⟨e,E⟩ ⇓ Abt. We

denote these outcomes with normal(e,E), errors(e,E), or aborts(e,E), respectively.

Definition 2 (Correctness of λc programs). A program e is correct with respect to the set of

environments E iff it does not error in any E ∈ E, i.e., correct(e, E)F ∀E ∈ E .¬errors(e,E).

These two definitions underlie the core computational tasks performed by solver-aided tools:
angelic execution and verification. Both tasks, which we call queries, can be understood as forms
of search. Angelic execution searches for a normal execution of a given program, while verification
searches for an execution that errors. We formalize both (Definitions 3 and 4) as partial functions
from a program and a set of environments to an environment that satisfies the query or unsat if
the query is unsatisfiable. The functions are partial because the two queries may not terminate
in general. But if they terminate, they must produce a correct result—i.e., we take them to be sound
semi-decision procedures for the angelic execution and verification problems.

Definition 3 (Angelic execution). Given a program e and set of environments E, the angelic

execution query guess(e, E) diverges or produces one of two results: either an environment E ∈ E such

that normal(e,E), or unsat if no such environment exists in E.

Definition 4 (Verification). Given a program e and set of environments E, the verification

query verify(e, E) diverges or produces one of two results: either an environment E ∈ E such that

errors(e,E), or unsat if no such environment exists in E.

Example 2. To illustrate Definitions 1–4, consider the program eabs from Example 1. This program
is correct with respect to EZ, the set of all environments that bind y to an integer. It also has
infinitely many normal executions with respect to this set. As a result, verify(eabs, EZ) = unsat, and
guess(eabs, EZ)may return any environment that binds y to a non-zero value, e.g., {y 7→ −1}. But eabs
is not correct with respect to EV , the set of all environments that bind y to any value. In particular,
it will error at line 2 in every environment that binds y to a non-integer value, since the equality
operator = expects its inputs to be integers. The verification query verify(eabs, EV ) may return any
of these environments, e.g., {y 7→ #t}. Since every environment that is in EV but not in EZ leads to
an error, guess(eabs, EV ) and guess(eabs, EZ) draw their outputs from the same non-empty subset
of EZ. The next section shows how to automate these queries using our symbolic semantics for λc .

4 Sc : A SEMANTICS FOR SYMBOLIC EVALUATIONWITH MERGING

To automate angelic execution and verification, solver-aided tools rely on symbolic evaluation
to express the guess(e, E) and verify(e, E) queries as logical formulas. This section presents Sc , a
new symbolic semantics for reducing λc programs to formulas. To accommodate a wide range of
practical implementations, Sc is parameterized by a symbolic factory, which is a set of abstract
functions for creating and manipulating symbolic values. We start by formalizing these notions and
relating them to our concrete semantics. Next, we present the symbolic evaluation rules for Sc ,
and contrast them to the classic merging semantics [Biere et al. 1999]. We conclude this section
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Symbolic values v̂ ∈ V̂ J·KV̂ : M → V̂ → V
truth : V̂ → B̂ ∀m, v̂ .Jtruth(v̂)KB̂m ↔ (Jv̂KV̂m , #f)

lift : (B ∪ D ∪ Ĉ) → V̂ ∀m, b .Jlift(b)KV̂m = b ∀m, d .Jlift(d )KV̂m = d ∀m, ĉ .Jlift(ĉ)KV̂m = JĉKĈm
merge : GV̂ → V̂ ∀m, G . onem (G) → Jmerge(G)Km = JGK

GV̂
m

cast : V̂ → GĈ ∀m, v̂ .Jv̂Km ∈ C → (onem (cast(v̂)) ∧ Jcast(v̂)K
GĈ
m = Jv̂Km )

∀m, v̂ .Jv̂Km < C → nonem (cast(v̂))
ôp : O → V̂ ∗ → R̂ ∀m, v̂1, . . . , v̂k .Jôp(v̂1, . . . , v̂k )KR̂m = op(Jv̂1Km, . . . , Jv̂k Km ) ∧ legalm (ôp(v̂1, . . . , v̂k ))

Symbolic booleans b̂ ∈ B̂ J·KB̂ : M → B̂ → B
tt, ff : B̂ ∀m .JttKm = #t ∀m .JffKm = #f

not : B̂ → B̂ ∀m, b̂ .Jnot(b̂)Km = ¬Jb̂Km
and : B̂ → B̂ → B̂ ∀m, b̂1, b̂2 .Jand(b̂1, b̂2)Km = (Jb̂1Km ∧ Jb̂2Km )

or : B̂ → B̂ → B̂ ∀m, b̂1, b̂2 .Jor(b̂1, b̂2)Km = (Jb̂1Km ∨ Jb̂2Km )

imp : B̂ → B̂ → B̂ ∀m, b̂1, b̂2 .Jimp(b̂1, b̂2)Km = (Jb̂1Km → Jb̂2Km )

Symbolic closure ĉ ∈ ĈF ⟨ĉl x, e, Ê ⟩
J·KĈ : M → Ĉ → V J⟨ĉl x, e, Ê ⟩KĈmF ⟨cl x, e, JÊKÊm ⟩

Symbolic environment Ê ∈ ÊF Variable↛ V̂
J·KÊ : M → Ê→ E JÊKÊmF{x 7→ v | x ∈ dom(Ê), v̂ = Ê[x ], Jv̂KV̂m = v }

Guarded choice д ∈ B̂ × α F ⟨b̂, a ⟩ where a ∈ α, JaKαm ∈ β guard(д)F b̂ choice(д)F a
Guarded choices G ∈ Gα F[д1, . . . , дn ]

J·KGα : M → Gα → β Jд :: GKGαm F if Jguard(д)Km then Jchoice(д)Kαm else JGKGαm
J [] KGαm F default(β )

one : M → Gα → B onem (G) F length(filter(λд .Jguard(д)Km, G)) = 1
none : M → Gα → B nonem (G)F length(filter(λд .Jguard(д)Km, G)) = 0

Symbolic state σ ∈ ΣF ⟨b̂1, b̂2 ⟩ assumes(σ )F b̂1 asserts(σ )F b̂2
normal : M → Σ → B normalm (σ )FJassumes(σ )Km ∧ Jasserts(σ )Km
aborts : M → Σ → B abortsm (σ )F ¬Jassumes(σ )Km ∧ Jasserts(σ )Km
errors : M → Σ → B errorsm (σ )FJassumes(σ )Km ∧ ¬Jasserts(σ )Km
legal : M → Σ → B legalm (σ )FJassumes(σ )Km ∨ Jasserts(σ )Km

≡ : M → Σ → Σ → B σ1 ≡m σ2FJassumes(σ1)Km = Jassumes(σ2)Km ∧ Jasserts(σ1)Km = Jasserts(σ2)Km
Symbolic result r̂ ∈ R̂FOut(σ , v̂) | Halt(σ )

state(r̂ )F σ value(Out(σ , v̂))F v̂ value(Halt(σ ))F default(V̂ )

Result : Σ → V̂ → R̂ Result(σ , v̂)F if (assumes(σ ) = ff ∨ asserts(σ ) = ff) then Halt(σ ) else Out(σ , v̂)

J·KR̂ : M → R̂ → R JOut(σ , v̂)KR̂mF if normalm (σ ) then Ans(Jv̂Km ) else if abortsm (σ ) then Abt else Err
JHalt(σ )KR̂m F if abortsm (σ ) then Abt else Err

legal : M → R̂ → B legalm (Out(σ , v̂))F legalm (σ )
legalm (Halt(σ )) F legalm (σ ) ∧ ¬normalm (σ )

Fig. 4. Symbolic factory interface, parameterized by the set of all modelsM , symbolic values V̂ , and symbolic

booleans B̂, as well as the parameters O , D, and op from the definition of λc . We use J·Kα to denote the

interpreter for values of type α , omitting the superscript α when it is clear from the context. The hat accent

denotes the symbolic counterpart of a concrete entity; e.g., v̂ is a symbolic value, where v is a concrete value.

by defining guess(e, E) and verify(e, E) in terms of the symbolic states computed by Sc . The next
section establishes the correctness of Sc and the queries we define on top of it.

4.1 The Symbolic Factory Interface

At a high level, a symbolic semantics lifts the rules of a concrete semantics to operate on sets of
concrete values, compactly represented as symbolic values. Practical evaluators have different ways
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of representing and manipulating symbolic values, and as we saw in Section 1, these differences can
lead to fundamentally different behaviors. To cover all reasonable behaviors in our formalization,
we define Sc against the abstract factory interface shown in Figure 4.

The factory interface is based on three core types: modelsM , symbolic values V̂ , and symbolic
booleans B̂. All three types are parameters to the factory, in addition to the parameters D, O , and
op inherited from λc . Conceptually, a symbolic boolean is a logical constraint on symbolic values;
a symbolic value is an expression over symbolic variables; a model maps symbolic variables to
concrete constants; and each symbolic boolean and value represents a unique concrete value under a
given model. The factory interface captures these relationships abstractly through the interpretation
functions J·KB̂ and J·KV̂ , which use models to give concrete meaning to symbolic booleans and
values, respectively. We specify the rest of the interface in terms of these core types and functions,
dropping the superscript from the interpreter notation when it is clear from the context.

The factory types and functions provide a basic mechanism for lifting the semantics of λc . They
serve as the symbolic counterparts of the concrete types, functions, and predicates that are used to
define the concrete evaluation rules for λc (Figure 3). We first explain how the factory components
help lift these rules, and then illustrate a toy factory for the language λZ from Example 1.

Lifting constants. The function lift : (B∪D∪Ĉ) → V̂ provides a way to lift themeaning of constant
expressions (Literal andClosure in Figure 3). Given an input i , lift(i) returns a symbolic value that
has the same interpretation as i under all models. The input i is either a concrete boolean, a concrete
constant of type D, or a symbolic closure. A symbolic closure ⟨ĉl x , e, Ê⟩ ∈ Ĉ is a straightforward
generalization of a concrete closure: it combines a procedure (λx .e) with a symbolic environment
Ê ∈ Ê, which maps variable names to symbolic values. Symbolic closures and environments evaluate
to their concrete counterparts via the interpretation functions J·KĈ and J·KÊ. Conversely, concrete
closures and environments can be made symbolic by recursively lifting their contents via lift(i).

Lifting conditionals. The functions truth : V̂ → B̂ andmerge : GV̂ → V̂ help lift the semantics of
conditional expressions (IfTrue and IfFalse). The former lifts the conditional test for λc , and the
latter lifts the output of conditional evaluation. In particular, truth(v̂) encodes a logical predicate
on v̂ that is true unless v̂ evaluates to #f, while merge(G) encodes the selection of a value from
a list G ∈ GV̂ of guarded choices. A guarded choice д ∈ B̂ × V̂ pairs a symbolic boolean with a
symbolic value (or, more generally, any value with an interpreter). When a list G of such choices
has one true guard under a given model, merge(G) evaluates to the choice with the true guard. For
example, merge([⟨b̂, v̂1⟩, ⟨not(b̂), v̂2⟩]) evaluates to Jv̂1Km if Jb̂Km is true, and to Jv̂2Km otherwise.
If G has no or many true guards under a given model, the behavior of merge(G) is unspecified for
that model, and irrelevant in the context of the symbolic semantics Sc .

Lifting procedure calls. The function cast : V̂ → GĈ lifts the dynamic cast from values to closures
that is implicit in the semantics of procedure calls. The semantics uses two rules (Call andCallBad)
to handle the results of successful and failed casts on concrete values. We use cast(v̂) to make this
operation explicit on symbolic values. The result of a symbolic cast is a list of guarded symbolic clo-
sures, cast(v̂) ∈ GĈ . This list selects at most one closure under every model to match the behavior of
v̂ : if Jv̂Km is a closure, then cast(v̂) evaluates to Jv̂Km , and if not, all guards in cast(v̂) are false under
m, indicating that the cast has failed. As an example, cast(merge([⟨b̂, lift(ĉ)⟩, ⟨not(b̂), lift(#f)⟩]))

produces a list of guarded closures that is equivalent to [⟨b̂, ĉ⟩] under every model. This list evaluates
to JĉKm when Jb̂Km is true, just like the input to the cast, and has no true guards otherwise.
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Symbolic booleans B̂Z, integers D̂Z, values V̂Z, and models MZ for λZ:
b̂ ∈ B̂Z F b | (! b̂) | (b̂1 && b̂2) | (d̂1 ∼ d̂2) b ∈ B F #t | #f ∼ F < | =

d̂ ∈ D̂Z F d | z | (−d̂ ) z ∈ Z F symbolic integer variable d ∈ ZF integer constant
v̂ ∈ V̂Z F b̂ | d̂ | ĉ | ϕ(b̂, v̂1, v̂2) m ∈ MZ F Z → Z

Interpreters for symbolic booleans B̂Z, integers D̂Z, and values V̂Z, with respect to models MZ:

JbKB̂Zm F b J(! b̂)KB̂Zm F ¬Jb̂KB̂Zm J(b̂1 && b̂2)K
B̂Z
m FJb̂1K

B̂Z
m ∧ Jb̂2K

B̂Z
m J(d̂1 ∼ d̂2)K

B̂Z
m FJd̂1K

D̂Z
m ∼ Jd̂2K

D̂Z
m

JdKD̂Zm F d JzKD̂Zm Fm[z] J(−d̂ )KD̂Zm F −JdKD̂Zm
Jb̂KV̂Zm FJb̂KB̂Zm Jd̂KV̂Zm FJd̂KD̂Zm JĉKV̂Zm FJĉKĈm Jϕ(b̂, v̂1, v̂2)K

V̂Z
m F if Jb̂KB̂m then Jv̂1KV̂m else Jv̂2KV̂m

Factory operations on symbolic booleans B̂Z:
ff F #f not(b)F ¬b and(#f, b̂)F #f and(b̂, b) F and(b, b̂) or(b̂1, b̂2) F not(and(not(b̂1), not(b̂2)))
ttF #t not(b̂)F (! b̂) and(#t, b̂)F b̂ and(b̂1, b̂2)F (b̂1 && b̂2) imp(b̂1, b̂2)F not(and(b̂1, not(b̂2)))

Factory operations on symbolic values V̂Z:
lift(i)F i

truth(b̂)F b̂ truth(d̂ )F #t truth(ĉ)F #t

truth(ϕ(b̂, v̂1, v̂2))F and(imp(b̂, truth(v̂1)), imp(not(b̂), truth(v̂2)))

merge([])F #f merge([д])F choice(д) merge(д1 :: д2 :: G)F ϕ(guard(д1), choice(д1), merge(д2 :: G))

cast(b̂)F[] cast(d̂)F[] cast(ĉ)F[⟨#t, ĉ ⟩]
cast(ϕ(b̂, v̂1, v̂2))F append(subcast(b̂, v̂1), subcast(not(b̂), v̂2))

subcast(b̂, v̂)Fmap(λд . ⟨and(b̂, guard(д)), choice(д)⟩, cast(v̂))

ôp(−, b̂)FHalt(⟨#t, #f⟩) ôp(−, ĉ)FHalt(⟨#t, #f⟩) ôp(−, v̂1, . . . , v̂k )FHalt(⟨#t, #f⟩) where k , 1
ôp(−, d )FOut(⟨#t, #t⟩, −d ) ôp(−, d̂ )FOut(⟨#t, #t⟩, (−d̂ )) ôp(−, ϕ(b̂, v̂1, v̂2))F . . . ôp(. . .)F . . .

Fig. 5. A toy factory for the language λZ from Example 1. The factory reuses the definition of symbolic

closures ĉ ∈ Ĉ and the interpreter J·KĈ from Figure 4.

Lifting operator calls. The function ôp : O → V̂ ∗ → R̂ lifts the function op : O → V ∗ → R, which
defines the semantics of operator calls (CallOp). Given a sequence v̂∗ = [v̂1, . . . , v̂k ] of symbolic val-
ues, ôp(v̂∗) produces a symbolic result that evaluates to the concrete result of op(Jv̂1Km , . . . , Jv̂k Km)
under every modelm. Section 4.2 describes symbolic results and states in detail. For now, it suffices
to note that the symbolic result of ôp evaluates to the concrete result of op as expected.

Example 3. To illustrate the factory interface, consider the toy factory in Figure 5. This factory
implements the interface for the language λZ from Example 1 as follows.
First, we define the symbolic boolean, integer, value, and model types for λZ. Our implemen-

tation supports only one kind of symbolic variables, symbolic integers z ∈ Z , so modelsm ∈ MZ
map symbolic integer variables to integer constants. Symbolic values include symbolic booleans,
integers, closures (Figure 4), and ϕ expressions, which select between two symbolic values based on
a symbolic boolean guard. We use ϕ expressions to represent conditionals for simplicity; practical
factories rely on more efficient representations (see, e.g., [Sen et al. 2015; Torlak and Bodik 2014]).
Next, we implement standard bottom-up interpreters for our base types, followed by a basic

implementation of the logical operations provided by the factory. Our logical operators simplify
their outputs when given concrete inputs and perform no other optimizations. In contrast, practical
implementations use dozens of logical equivalences to simplify their outputs as much as possible.

Finally, we implement lift, truth,merge, cast, and ôp. These are straightforward except formerge

and ôp. For example, Jtruth(ϕ(b̂, b̂1, d̂2))Km is equivalent to (Jb̂Km → Jb̂1Km) ∧ (¬Jb̂Km → J#tKm),
which says that truth(ϕ(b̂, b̂1, d̂2)) is false only when b̂ is true and b̂1 is false. Similarly, cast(ϕ(b̂, ĉ, d̂))
produces [⟨b̂, ĉ⟩], which evaluates to ĉ when ϕ(b̂, ĉ, d̂) does and has no true guards otherwise. To
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see why merge(G) works, recall that it must match the interpretation of G only under models that
make exactly one guard in G true. In this case, merge([]) can return anything; merge([д]) must
return the sole chosen value; and the nested ϕ value produced by merge(д1 :: д2 :: G) is equivalent
to д1 :: д2 :: G. For example, merge([⟨b̂, v̂1⟩, ⟨not(b̂), v̂2⟩]) returns ϕ(b̂, v̂1, v̂2). We show the base
cases for ôp(−, . . .) and omit the rest for brevity. For example, ôp(−) errors because it is given the
wrong the number of arguments, while ôp(−, d̂) terminates normally and produces the right value.

4.2 Evaluation Rules for Sc

Given a symbolic factory, we define the symbolic semantics Sc using the rules shown in Figure 6.
The rules lift the concrete semantics of λc (Figure 3) to work on symbolic values. The judgment
⟨e, Ê,σ ⟩

⇛

r̂ says that the expression e produces the symbolic result r̂ when evaluated in the
symbolic environment Ê and state σ . Intuitively, this judgment encodes a set of concrete executions
⟨e, JÊKm⟩ ⇓ Jr̂Km , one for each modelm ∈ M . The environment Ê ∈ Ê maps variables to symbolic
values. The input state σ ∈ Σ consists of two formulas, assumes(σ ) and asserts(σ ), that jointly
indicate if prior execution steps terminated normally, errored, or aborted under a given model
(Figure 4). The result r̂ ∈ R̂ is eitherOut(σ ′, v̂) orHalt(σ ′). The former means that e may error, abort,
or terminate normally to produce Jv̂Km , with the outcome determined by the output state σ ′. The
latter means that e cannot terminate normally under any model; i.e., normalm(σ

′) is guaranteed to
be false. We describe the rules ofSc below, and discuss the main features of our design in Section 4.3.

Lifting constants and variables. The rules for evaluating constants (Literal, Closure) and vari-
ables (Variable) are straightforward. Each lifts the concrete evaluation rule of the same name
(Figure 3), by replacing all the concrete constructs with their symbolic counterparts. For example,
the symbolic Variable rule looks up the variable x in the symbolic environment Ê, just as the
concrete Variable rule looks up x in the concrete environment E. Similarly, the symbolic Literal
and Closure rules return the result of lifting a given literal and closure, respectively, via lift(i).

Lifting error and abort expressions. The rules Error and Abort are more interesting. Each
produces a result of the form Halt(σ ′), since evaluating (error) or (abort) always leads to abnormal
termination. The two rules differ in how they compute the output state σ ′: Error uses assert(σ ,ff)
and Abort uses assume(σ ,ff). The resulting output states update one component of the input
state—asserts or assumes, respectively—and leave the other component unchanged. These updates
are symmetric, which is a key feature of Sc discussed in Section 4.3. For now, we note that
errorsm(assert(σ ,ff)) and abortsm(assume(σ ,ff)) if σ is normal underm, and the two states are
equivalent (≡m) to σ otherwise. In other words, errors are treated as failed assertions; aborts are
treated as failed assumptions; and both are no-ops when the input state is already abnormal.

Example 4. To illustrate the Error rule (and, by symmetry, the Abort rule), suppose that we have
⟨(error), Ê,σ ⟩

⇛

Halt(σ ′), where σ ′ stands for assert(σ ,ff). If the state σ is normal under a model
m, then we have:

errorsm (σ ′) = Jassumes(σ ′)Km ∧ ¬Jasserts(σ ′)Km
= Jassumes(σ )Km ∧ ¬Jand(assumes(σ ), imp(assumes(σ ), ff))Km
= Jassumes(σ )Km ∧ ¬(Jasserts(σ )Km ∧ (Jassumes(σ )Km → JffKm ))

= #t ∧ ¬(#t ∧ (#t → #f))

= #t

In this case, Halt(σ ′) evaluates to Err underm, as expected. Similar reasoning shows that if σ is
abnormal underm, then σ ′ ≡m σ , so Halt(σ ′) evaluates to Err or Abt, depending on σ ′, and the
Error rule propagates the existing cause of abnormal termination.
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Literal
v ∈ B ∪ D

⟨v, Ê, σ ⟩

⇛

Out(σ , lift(v))
Closure

⟨(λx .e), Ê, σ ⟩

⇛

Out(σ , lift(⟨ĉl x, e, Ê ⟩))

Variable
x ∈ dom(Ê)

⟨x, Ê, σ ⟩

⇛

Out(σ , Ê[x ])
CallOp

⟨x1, Ê, σ ⟩

⇛

Out(σ , v̂1) . . . ⟨xn, Ê, σ ⟩
⇛

Out(σ , v̂n )

⟨(o x1 . . . xn ), Ê, σ ⟩

⇛

strengthen(σ , ôp(o, v̂1, . . . , v̂n ))

Call

⟨x1, Ê, σ ⟩

⇛

Out(σ , v̂1) ⟨x2, Ê, σ ⟩

⇛

Out(σ , v̂2) G1 = cast(v̂1) n = length(G1) = length(G2)
γ = some(guard, G1) σ ′ = assert(σ , γ ) γ , ff ∧ assumes(σ ′) , ff ∧ asserts(σ ′) , ff

∀i ∈ [0, n). let ⟨b̂1, ⟨ĉl x, e, Ê1 ⟩⟩FG1[i], ⟨b̂2, r̂ ⟩FG2[i] in (b̂1 = b̂2 ∧ ⟨e, Ê1[x 7→ v̂2], assume(σ ′, b̂1)⟩

⇛

r̂ )

⟨(x1 x2), Ê, σ ⟩

⇛

mergeR̂ (σ
′, G2)

CallBad

⟨x1, Ê, σ ⟩

⇛

Out(σ , v̂1) ⟨x2, Ê, σ ⟩
⇛

Out(σ , v̂2) G1 = cast(v̂1)
γ = some(guard, G1) σ ′ = assert(σ , γ ) γ = ff ∨ assumes(σ ′) = ff ∨ asserts(σ ′) = ff

⟨(x1 x2), Ê, σ ⟩

⇛

Halt(σ ′)

Let
⟨e1, Ê, σ ⟩

⇛

Out(σ ′, v̂1) ⟨e2, Ê[x 7→ v̂1], σ ′⟩

⇛

r̂

⟨(let (x e1) e2), Ê, σ ⟩

⇛

r̂
LetHalt

⟨e1, Ê, σ ⟩

⇛

Halt(σ ′)

⟨(let (x e1) e2), Ê, σ ⟩

⇛

Halt(σ ′)

IfTrue

⟨x, Ê, σ ⟩

⇛

Out(σ , v̂)
truth(v̂) = tt ⟨e1, Ê, σ ⟩

⇛

r̂

⟨(if x e1 e2), Ê, σ ⟩

⇛

r̂
IfFalse

⟨x, Ê, σ ⟩

⇛

Out(σ , v̂)
truth(v̂) = ff ⟨e2, Ê, σ ⟩

⇛

r̂

⟨(if x e1 e2), Ê, σ ⟩

⇛

r̂

IfSym

⟨x, Ê, σ ⟩

⇛

Out(σ , v̂) truth(v̂) , tt ∧ truth(v̂) , ff

⟨e1, Ê, assume(σ , truth(v̂))⟩

⇛

r̂1 ⟨e2, Ê, assume(σ , not(truth(v̂)))⟩

⇛

r̂2

⟨(if x e1 e2), Ê, σ ⟩

⇛

mergeR̂ (σ , [⟨truth(v̂), r̂1 ⟩, ⟨not(truth(v̂)), r̂2 ⟩])

Error
⟨(error), Ê, σ ⟩

⇛

Halt(assert(σ , ff))
Abort

⟨(abort), Ê, σ ⟩

⇛

Halt(assume(σ , ff))

assume : Σ → B̂ → Σ assume(σ , b̂)F ⟨and(assumes(σ ), imp(asserts(σ ), b̂)), asserts(σ )⟩
assert : Σ → B̂ → Σ assert(σ , b̂)F ⟨assumes(σ ), and(asserts(σ ), imp(assumes(σ ), b̂))⟩

mergeR̂ : Σ → GR̂ → R̂ mergeR̂ (σ , G)F if andmap(λд . choice(д) ∈ Halt(·), G)

then Halt(mergeΣ(σ , G))

else Result(mergeΣ(σ , G), mergeV̂ (G))

mergeΣ : Σ → GR̂ → Σ mergeΣ(σ , G)F ⟨and(assumes(σ ), all(λ ⟨b̂, r̂ ⟩. imp(b̂, assumes(state(r̂ ))), G)),

and(asserts(σ ), all(λ ⟨b̂, r̂ ⟩. imp(b̂, asserts(state(r̂ ))), G))⟩

mergeV̂ : GR̂ → V̂ mergeV̂ (G)Fmerge(map(λ ⟨b̂, r̂ ⟩. ⟨b̂, value(r̂ )⟩, G))

strengthen : Σ → R̂ → R̂ strengthen(σ , Halt(σ ′))FHalt(compose(σ , σ ′))

strengthen(σ , Out(σ ′, v̂))F Result(compose(σ , σ ′), v̂)

compose : Σ → Σ → Σ compose(σ , σ ′)F ⟨and(assumes(σ ), imp(asserts(σ ), assumes(σ ′))),

and(asserts(σ ), imp(assumes(σ ), asserts(σ ′)))⟩

some : (α → B̂) → α ∗ → B̂ some(f , A)F foldr(λa .b̂ .or(f (a), b̂), ff, A)
all : (α → B̂) → α ∗ → B̂ all(f , A)F foldr(λa .b̂ .and(f (a), b̂), tt, A)

Fig. 6. Symbolic semantics Sc for λc , parameterized by the symbolic factory types and functions (Figure 4),

as well as the parameters O , D, and op from the syntax and concrete semantics of λc (Figure 2, 3).

Lifting procedure calls. The rules Call and CallBad lift the semantics of procedure calls (x1 x2)
as follows. Given ⟨x1, Ê,σ ⟩

⇛

Out(σ , v̂1) and ⟨x2, Ê,σ ⟩

⇛

Out(σ , v̂2), both rules compute cast(v̂1)
to extract all possible symbolic closuresG1 from v̂1. Then, they useG1 to construct the formula γ =
some(guard,G1), which is true when some guard inG1 is true, and the state σ ′ = assert(σ ,γ ), which
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asserts that γ holds. If the factory reduces either γ or a component of σ ′ to ff, we know that v̂1 is not
a closure or σ ′ is not normal under any model. In this case, CallBad triggers and producesHalt(σ ′).
Otherwise, Call establishes that, for every choice ⟨b̂i , ĉi ⟩ ∈ G1, applying the closure ĉi to the value
v̂2 in the state assume(σ ′, b̂i ) produces the result r̂i . The guarded results ⟨b̂i , r̂i ⟩ form the listG2 of all
possible outcomes of applying v̂1 to v̂2. Callmerges these outcomes into the resultmergeR̂ (σ

′,G2),
which evaluates to JG2Km if σ ′ is normal under m, and to JHalt(σ ′)Km otherwise. In a nutshell,
Call applies the closures from cast(v̂1) separately to v̂2 and merges the results, and CallBad
short-circuits this process when the factory is able to determine that cast(v̂1) can never succeed.

Example 5. Consider evaluating the procedure call (x1 x2) in the environment Ê = {x1 7→ v̂1,x2 7→
v̂2} and state σ = ⟨tt,tt⟩, using the toy symbolic factory from Example 3. In this setting, we have
⟨x1, Ê,σ ⟩

⇛

Out(σ , v̂1) and ⟨x2, Ê,σ ⟩

⇛

Out(σ , v̂2), and we illustrate the two call rules as follows.
First, suppose that v̂1 = 42. Using the definitions from Figure 5, we see that G1 = cast(v̂1) = [],

γ = some(guard,G1) = ff, and σ ′ = assert(σ ,γ ) = assert(σ ,ff) = ⟨tt,ff⟩. These preconditions
trigger CallBad to return Halt(σ ′), which evaluates to Err under all models.
Second, suppose that v̂1 = ϕ(b̂, ĉ1, ĉ2), where b̂ = (z < 0), ĉ1 = ⟨ĉl x , 0, Ê1⟩, and ĉ2 = ⟨ĉl x , 1, Ê2⟩.

We now have G1 = cast(v̂1) = [⟨b̂, ĉ1⟩, ⟨! b̂, ĉ2⟩], γ = !((!(! b̂)) && (! b̂)), and σ ′ = assert(σ ,γ ) =

⟨tt,γ ⟩. This triggers the Call rule to establish that G2 = [⟨b̂,Out(σ1, 0)⟩, ⟨! b̂,Out(σ2, 1)⟩], where
σ1 = assume(σ ′, b̂) = ⟨!(γ && ! b̂),γ ⟩ and σ2 = assume(σ ′, ! b̂) = ⟨!(γ && ! ! b̂),γ ⟩. Finally,
we have mergeR̂ (σ

′,G2) = Out(mergeΣ(σ
′,G2),mergeV̂ (G2)) = Out(⟨b̂1, b̂2⟩,ϕ(b̂, 0, 1)), where

b̂1 = !(! b̂ && ! !(γ && ! ! b̂)) && !(b̂ && ! !(γ && ! b̂)) and b̂2 = γ &&(!(! b̂ && !γ ) && !(b̂ && !γ )). Ap-
plying basic logical simplifications to γ , b̂1, and b̂2, we see that they are all equivalent to tt. So, the
result of the call is Out(⟨tt,tt⟩,ϕ(b̂, 0, 1)), which matches the interpretation of G2 under all models.

Lifting let expressions and conditionals. The rules Let, LetHalt, IfTrue, IfFalse, and IfSym are
analogous to Call and CallBad. In particular, Let and IfSym provide a general mechanism for
lifting let expressions and conditionals, and the remaining rules short-circuit this mechanism in
important special cases. LetHalt ensures that the expression (let (x e1) e2) halts for the same reason
as e1 when e1 is guaranteed to halt under all models. IfTrue and IfFalse avoid executing infeasible
branches of a conditional when the conditional test is a logical constant and therefore has the same
value under all models. All three of these special-case rules mirror the corresponding concrete
evaluation rules in Figure 3. The two general rules, Let and IfSym, behave similarly to Call.

Lifting operator calls. The rule CallOp lifts the semantics of operator calls using the factory
function ôp and the auxiliary function strengthen. The function strengthen(σ , r̂ ) updates the result
r̂ of ôp so that it evaluates to Jr̂Km when σ is normal under the modelm and to JHalt(σ )Km otherwise.
In essence, ôp calculates its result assuming an unconstrained start state, i.e., ⟨tt,tt⟩, and CallOp
strengthens this result to reflect the constraints imposed by the input state σ .

Example 6. Suppose that we want to evaluate (− x) in the environment Ê = {x 7→ 0} and state σ , us-
ing the toy factory from Example 3. In this case, we have r̂ = ôp(−, 0) = Out(⟨#t, #t⟩, 0). Assuming
that neither component ofσ is constant, we have strengthen(σ , r̂ ) = Result(compose(σ , ⟨#t, #t⟩), 0)
= Result(⟨and(assumes(σ ), imp(asserts(σ ), #t)), and(asserts(σ ), imp(assumes(σ ), #t))⟩, 0), simpli-
fied to Out(⟨assumes(σ ), asserts(σ )⟩, 0) = Out(σ , 0). This result matches Jr̂Km when σ is normal
underm, and it evaluates to Err or Abt otherwise, depending on σ .

4.3 Properties of Sc

The evaluation rules for Sc are designed to preserve three key properties: legality, reducibility,
and determinism. This last property is general and shared by other approaches. The first two are
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inherent in symbolic execution but missing from prior merging semantics [Biere et al. 1999]. All
three are important guarantees for tools built on top of reusable symbolic evaluators.

Legality. Legality is a property of symbolic states that gives client tools a simple interpretation
of what these states mean. In particular, the two bits of state distinguish normal termination, where
both bits are true, from errors and aborts, where one bit is true and the other is false. A state with
two false bits has no natural meaning, so a state is legal under a model m if at least one of its
components, assumes(σ ) or asserts(σ ), is true underm (Figure 4). Our semantics supports this
intuitive interpretation by ensuring that every legal state leads to a legal result.

Theorem 2. Evaluating an expression from a legal symbolic state leads to a legal symbolic result:

∀e, Ê,σ , r̂ ,m. (legalm(σ ) ∧ ⟨e, Ê,σ ⟩

⇛

r̂ ) → legalm(r̂ ).

Preserving legality amounts to guaranteeing that each stateσ is free of errorswhen assumes(σ ) →
asserts(σ ) holds under a given model. Symbolic execution maintains this relation by calling
the solver to check the symbolic state after each update, and proceeding only if the state re-
mains feasible and free of errors. Both symbolic execution and the classic merging semantics
update the symbolic state in the same way: assert(σ , b̂) from Figure 6 updates the assertions, and
assume

′(σ , b̂)F⟨and(assumes(σ ), b̂), asserts(σ )⟩ updates the assumptions. But the classic seman-
tics does not check the updated states for errors and feasibility, and without these checks, the
updates can produce illegal results. Our semantics uses a different updating function, assume(σ , b̂),
which preserves legality by construction, as illustrated in Example 7.

Example 7. To illustrate the difference between Sc and the classic merging semantics, consider
evaluating the following program in the environment Ê = {x 7→ v̂1,y 7→ v̂2} and state σ = ⟨tt,tt⟩:
1 (let (_ (if x #t (error))) ; assert truth(x)
2 (let (_ (if y #t (abort))) ; assume truth(y)
3 _))

Given these inputs, Sc produces a result that is equivalent to r̂ = Out(assume(assert(σ , b̂1), b̂2), ·),
and the classic semantics produces one equivalent to r̂ ′ = Out(assume

′(assert(σ , b̂1), b̂2), ·), where
b̂1 = truth(v̂1) and b̂2 = truth(v̂2). After simplifying the resulting states, we get state(r̂ ) =
⟨imp(b̂1, b̂2), b̂1⟩ and state(r̂ ′) = ⟨b̂2, b̂1⟩. The former is legal under all models, and it is free of
errors when Jassumes(state(r̂ )) → asserts(state(r̂ ))Km = Jb̂1Km holds. The latter is illegal when b̂1
and b̂2 are both false, and tools must account for this when formulating verification queries.

Reducibility. Reducibility is a property of symbolic evaluation that lets client tools treat the
symbolic evaluator as a generalized concrete interpreter. Informally, a reducible symbolic evaluator
behaves like the underlying concrete interpreter when applied to a (lifted) concrete environment.
Reducibility is crucial for testing of client code (see, e.g., [Nelson et al. 2019]), and for ensuring
that symbolic evaluation abandons infeasible paths as soon as possible. It is baked into symbolic
execution, which reduces to evaluating the same program path as concrete execution in a concrete
environment. In contrast, the classic merging semantics mirrors the concrete semantics only on
loop-free programs—loops can cause it to diverge even when the corresponding concrete execution
terminates. Our symbolic semantics reduces to the concrete semantics on all programs (Theorem 3),
when coupled with a symbolic factory that takes (lifted) concrete inputs to (lifted) concrete outputs
(Definition 5). This optimization is common to practical factories, as well as the toy one from Ex-
ample 3. Unlike the classic merging semantics, Sc takes advantage of this optimization to abandon
halted paths and avoid infeasible infinite loops whenever possible. The key is to introduce the
notion of halted results, Halt(σ ), and the rules for propagating them, as shown in Example 8.
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Definition 5 (Reducing factory). A symbolic factory is a reducing factory if and only if it

satisfies the factory specification (Figure 4) and takes lifted concrete inputs to lifted concrete outputs:

truth(liftV (#f)) = ff ∀b . not(b) = liftB (¬b)

∀v . v , #f → truth(liftV (v)) = tt ∀b1, b2 . and(b1, b2) = liftB (b1 ∧ b2)

∀v . merge([⟨tt, liftV (v)⟩]) = liftV (v) ∀b1, b2 . or(b1, b2) = liftB (b1 ∨ b2)

∀x, e, E . cast(liftV (⟨cl x, e, E ⟩)) = [⟨tt, ⟨ĉl x, e, liftE(E)⟩⟩] ∀b1, b2 . imp(b1, b2) = liftB (b1 → b2)

∀v . v < C → cast(liftV (v)) = []

∀v1, . . . , vn . ôp(o, liftV (v1), . . . , liftV (vn )) = liftR (op(o, v1, . . . , vn ))

Here, the lifting functions generalize lift as follows:

liftV (b)F lift(b) liftV (d )F lift(d ) liftV (⟨cl x, e, E ⟩)F lift(⟨ĉl x, e, liftE(E)⟩)

liftB (#t)F tt liftB (#f)F ff liftE(E)F{x 7→ liftV (E[x ]) | x ∈ dom(E)}

liftR (Err)FHalt(⟨tt, ff⟩) liftR (Abt)FHalt(⟨ff, tt⟩) liftR (Ans(v))FOut(⟨tt, tt⟩, liftV (v))

Theorem 3. If Sc is parameterized with a reducing symbolic factory, then it reduces to the concrete

semantics of λc in all lifted concrete environments: ∀e,E, r . ⟨e, liftE(E), ⟨tt,tt⟩⟩ ⇛ liftR (r ) ↔ ⟨e,E⟩ ⇓ r .

Example 8. Consider evaluating the following program in the environment Ê = {x1 7→ liftV (#f),
x2 7→ liftV (#f)} and state σ = ⟨tt,tt⟩, using a reducing factory such as the toy factory from
Example 3:
1 (let (x2 (x1 x2))
2 (let (y (λ y . (y y)))
3 (y y)))

From Definition 5, we see that cast(liftV (#f)) = [] so some(guard, []) = ff, triggering CallBad to
return Halt(σ ′) = Halt(assert(σ ,ff)) = Halt(⟨tt,ff⟩). This result then triggers LetHalt to return
Halt(⟨tt,ff⟩) = liftR (Err) as the output of the program, matching its concrete execution in the
environment E = {x1 7→ #f,x2 7→ #f}. Now consider evaluating the same program with the classic
merging semantics, which has no notion of halted results or rules for handling them. Without this
mechanism, Call would return Out(assert(σ ,ff), ·) and trigger Let, leading to an infinite loop.

Determinism. In addition to preserving legality and reducibility, Sc is also deterministic (Theo-
rem 4): it always produces the same result when applied to the same environment and state. This is
important for the development and debugging of client tools, as well as for their usability. Assuming
that the underlying solver is deterministic too, a client query is guaranteed to behave consistently
across runs, by consuming the same amount of resources to produce the same output.

Theorem 4. Evaluating an expression from the same symbolic environment and state produces the

same symbolic result: ∀e, Ê,σ , r̂1, r̂2. (⟨e, Ê,σ ⟩ ⇛ r̂1 ∧ ⟨e, Ê,σ ⟩

⇛

r̂2) → r̂1 = r̂2.

4.4 Angelic Execution and Verification with Sc

Given an implementation of Sc and a solver for formulas b̂ ∈ B̂ (Definition 6), we can implement the
angelic execution and verification queries as shown in Definition 7. Both queries use Sc to evaluate
the input program e in the symbolic environment Ê that represents a set of concrete environments
E = {E | ∃m. JÊKm = E}. Angelic execution then uses the solver to search for a model in which
the resulting symbolic state is normal, and verification searches for a model in which the resulting
state errors. The next section shows that this correctly implements Definitions 3 and 4, respectively.

Definition 6 (Solver). Given a symbolic boolean b̂ ∈ B̂, a solver solve(b̂) diverges or produces

one of two results: either a modelm ∈ M such that Jb̂Km is true, or unsat if no such model exists.
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Definition 7 (Queries). Let Ê be a symbolic environment that represents a set of concrete states

E = {E | ∃m. JÊKm = E}. We define guess(e, Ê) and verify(e, Ê) as follows:

guess(e, Ê)F let ⟨e, Ê, ⟨tt, tt⟩⟩

⇛

r̂, σ = state(r̂ ) in lower(Ê, solve(and(assumes(σ ), asserts(σ ))))

verify(e, Ê)F let ⟨e, Ê, ⟨tt, tt⟩⟩

⇛

r̂, σ = state(r̂ ) in lower(Ê, solve(and(assumes(σ ), not(asserts(σ )))))

lower(Ê,m)FJÊKm
lower(Ê, unsat)F unsat

5 CORRECTNESS OF Sc

This section establishes the correctness ofSc and the queries implemented on top of it. We formulate
and prove the soundness and completeness theorem for Sc . Because Sc may diverge in the presence
of loops, this formulation considers all diverging runs to be trivially correct. We therefore prove an
additional theorem showing that Sc is guaranteed to terminate on all loop-free programs: like the
classic merging semantics, Sc defines a total, sound, and complete symbolic evaluation function
for this class of programs. To conclude, we establish that our implementations of guess(e, Ê) and
verify(e, Ê) satisfy the definitions of angelic execution and verification given in Section 3.

5.1 Soundness and Completeness of Sc

What does it mean for a symbolic semantics to be correct, i.e., sound and complete? In the case of
symbolic execution, soundness and completeness can be formulated by relating paths in the symbolic
execution tree to concrete execution traces (see, e.g., [Fragoso Santos et al. 2020; Lucanu et al. 2017]):
soundness means that every concrete trace of length n is covered by some feasible symbolic path of
length n, and completeness means that every feasible symbolic path corresponds to a concrete trace.
This formulation works for all programs and all symbolic execution trees. But because it assumes
path-based evaluation, it does not apply to merging semantics such as Sc . To reason about symbolic
evaluation with merging, we take inspiration from prior work on formalizing static analyzers [Jour-
dan 2016; Jourdan et al. 2015] based on abstract interpretation [Cousot and Cousot 1977, 1979].
We adapt two ideas from this work [Cousot and Cousot 1977, 1979; Jourdan 2016; Jourdan

et al. 2015] to our setting. First, we define what it means for a merging semantics to be correct by
relating the final result of symbolic evaluation to the final results of concrete evaluation, instead
of relating paths in the symbolic evaluation graph to concrete traces. Second, we phrase our notion
of correctness so that all diverging runs of the symbolic evaluator are trivially correct. In prior
work [Jourdan 2016; Jourdan et al. 2015], this phrasing avoids the need to prove that abstract
interpretation terminates, which is always possible but may be tedious. In our setting, this phrasing
is necessary because symbolic evaluation may not terminate in the presence of loops.

Analogously to prior work, we formulate the soundness and completeness theorem for Sc (Theo-
rem 5) by viewing symbolic environments and results as sets of concrete environments and results.
Recall from Section 4 that the factory interpretation functions J·Kα̂ use modelsm ∈ M to relate
symbolic objects â ∈ α̂ to their concrete counterparts a = JâKα̂m ∈ α . So, every symbolic object â
represents the set of all concrete objects a ∈ α to which â can evaluate via some model. We formalize
this relation by writing a ∈∈∈ â to denote that a = JâKα̂m for some modelm ∈ M (Definition 8). Given
the relation ∈∈∈, our correctness theorem forSc states the following. Let Ê and r̂ be a symbolic environ-
ment and result such that ⟨e, Ê, ⟨tt,tt⟩⟩

⇛

r̂ . Then, r̂ both overapproximates and underapproximates
the set of concrete results that can be reached from Ê: if r is the result of a concrete run from an envi-
ronment E ∈∈∈ Ê, then r ∈∈∈ r̂ ; and every r ∈∈∈ r̂ can be produced by a concrete run from some environment
E ∈∈∈ Ê. In other words, r̂ precisely captures the set of all concrete results that are reachable from Ê.
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Definition 8 (Concrete membership). Let J·Kα̂ : M → α̂ → α be an interpretation function

provided by a symbolic factory (Figure 4). This interpreter defines the concrete membership relation
∈∈∈ from α to α̂ as follows: ∀a, â. a ∈∈∈ â ↔ ∃m. a = JâKα̂m .

Theorem 5 (Soundness and Completeness). The semantics Sc is sound and complete with
respect to the concrete semantics of λc .

Sc soundness: ∀e, Ê, r̂ . ⟨e, Ê, ⟨tt,tt⟩⟩ ⇛ r̂ → ∀E. E ∈∈∈ Ê → ∀r . ⟨e,E⟩ ⇓ r → r ∈∈∈ r̂

Sc completeness: ∀e, Ê, r̂ . ⟨e, Ê, ⟨tt,tt⟩⟩ ⇛ r̂ → ∀r . r ∈∈∈ r̂ → ∃E. ⟨e,E⟩ ⇓ r ∧ E ∈∈∈ Ê

As noted earlier, our definition of correctness is partial, and this formulation is necessary to
account for programs with loops. But solver-aided tools often target finite programs, which are free
of loops and procedure calls. For this class of programs, Sc provides the same strong guarantee as
symbolic execution and the classic merging semantics: evaluation always terminates (Theorem 6)
with a sound and complete result (Theorem 5).

Theorem 6 (Termination on finite programs). Let e be a program that contains no procedure

calls, and let Ê be a symbolic environment that binds every free variable in e . Then, there exists a
symbolic result r̂ such that ⟨e, Ê, ⟨tt,tt⟩⟩

⇛

r̂ .

5.2 Correctness ofQueries Based on Sc

Building on the correctness of Sc , we use Theorems 7 and 8 to show that our implementations of
angelic execution and verification (Definition 7) satisfy Definitions 3 and 4, respectively. Theorem 7
establishes that guess(e, Ê) produces a correct output whenever it terminates. If the output of
guess(e, Ê) is an environment E, then e executes normally in E ∈∈∈ Ê. But if the output is unsat, then
there is no environment E ∈∈∈ Ê in which e executes normally. Theorem 8 is symmetric.

Theorem 7. If guess(e, Ê) terminates, then its output is correct according to Definition 3.

SAT: ∀e, Ê,E. guess(e, Ê) = E → (E ∈∈∈ Ê ∧ normal(e,E))

UNSAT: ∀e, Ê. guess(e, Ê) = unsat → ∀E. (E ∈∈∈ Ê → ¬normal(e,E))

Theorem 8. If verify(e, Ê) terminates, then its output is correct according to Definition 4.

SAT: ∀e, Ê,E. verify(e, Ê) = E → (E ∈∈∈ Ê ∧ errors(e,E))

UNSAT: ∀e, Ê. verify(e, Ê) = unsat → ∀E. (E ∈∈∈ Ê → ¬errors(e,E))

6 IMPLEMENTING Sc : A CASE STUDY OF TWO EVALUATORS

To demonstrate the suitability of our framework for developing and validating reusable evaluators,
we write and validate two different implementations of Sc . One is a reference evaluator written
in Lean, and the other is an optimized evaluator written in Racket. We use Lean to prove that the
reference evaluator correctly implements Sc , and we use solver-aided differential testing to validate
the optimized evaluator against the reference one. This section presents our implementations,
correctness theorems, testing setup, and test results.

6.1 Leanette: A Verified Implementation of Sc in Lean

The reference evaluator, which we call Leanette, is implemented as a generic symbolic interpreter
for λc . Like Sc , it is parameterized by a symbolic factory and relies on the factory interface to con-
struct and deconstruct symbolic values. Because Lean requires all functions to terminate, Leanette
ensures termination in the standard way, by using a fuel parameter n ∈ N to bound the depth of the
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recursive call stack. With the addition of fuel, Leanette(n, e, Ê,σ ) produces either a symbolic result
r̂ such that ⟨e, Ê,σ ⟩

⇛

r̂ , or none, to indicate that the evaluation is stuck. This implementation is both
sound and complete with respect to our symbolic semantics (Theorem 9): Sc admits every result
produced by Leanette, and, given enough fuel, Leanette can produce every result admitted by Sc .

Theorem 9 (Leanette soundness and completeness). The Leanette symbolic evaluator is

sound and complete with respect to the semantics Sc .

Soundness: ∀n, e, Ê,σ , r̂ . Leanette(n, e, Ê,σ ) = r̂ → ⟨e, Ê,σ ⟩

⇛

r̂

Completeness: ∀e, Ê,σ , r̂ . ⟨e, Ê,σ ⟩ ⇛ r̂ → ∃n. Leanette(n, e, Ê,σ ) = r̂
We instantiate Leanette with a naïve symbolic factory FL , which supports integers, lists, and

basic operations on these datatypes (+, *, =, <, cons, car, cdr, null?). The factory supports two
types of symbolic variables, booleans and integers, and models m ∈ M map these variables to
concrete values of the right type. Symbolic booleans B̂, integers D̂, and values V̂ are defined sim-
ilarly to the toy factory in Figure 5, with one main exception: we use symbolic unions instead
of ϕ values to represent the output of conditional evaluation. In our implementation, a symbolic
union is a list of guarded values, [⟨b̂1, v̂1⟩, . . . , ⟨b̂k , v̂k ⟩] ∈ GV̂ , that are themselves not unions (i.e.,
v̂i < GV̂ ). This representation is a simplified version of the symbolic unions used in Rosette [Torlak
and Bodik 2014]. Unlike Rosette’s factory, FL offers no guarantees on the size of the unions or
formulas generated during evaluation. In fact, both are worst-case exponential in the size of the
(unrolled) input program. But FL is easier to reason about, and we prove that it satisfies the symbolic
factory interface (Theorem 10). We also prove that FL is a reducing factory, so our instantiation
of Leanette is a sound, complete, and reducible symbolic evaluator for λc with integers and lists.

Theorem 10 (Leanette factory correctness and reducibility). The Leanette factory FL
satisfies the symbolic factory interface (Figure 4) and the definition of a reducing factory (Definition 5).

6.2 Rosette 4: An Optimized Implementation of Sc in Racket

The optimized evaluator, Rosette 4, implements Sc for the entire Rosette language [Torlak and
Bodik 2014], which is a superset of λc . The Rosette language extends Racket [Felleisen et al. 2018;
Flatt and PLT 2010] with constructs for creating symbolic values, emitting assertions, and formulat-
ing solver-aided queries. Rosette’s existing reusable evaluator, which we call Rosette 3, is based on
the classic merging semantics, and it has been used to develop over 30 solver-aided tools for a wide
variety of applications. Rosette 4 replaces the core evaluation rules of Rosette 3 with those of Sc .

Rosette 4 also makes two changes to the Rosette 3 interface, to reflect the switch to Sc . First, it
extends the Rosette language to include assumptions, (assume e), which act as syntactic sugar for
the (abort) expression in λc . This change makes assumptions a first-class construct in Rosette 4;
they can appear anywhere in a program. In contrast, Rosette 3 has limited support for assumptions
via #:assume e clauses in verification and synthesis queries. These clauses require client tools to emit
all required assumptions upfront, which is not always feasible, leading to complex custom code for
precondition tracking (see Section 7.1). Second, Rosette 4 exposes a different interface for symbolic

reflection [Torlak and Bodik 2014]. Symbolic reflection is a mechanism for allowing client tools to
observe the symbolic state during evaluation, and to control the performance of the evaluator using
high-level language constructs. In Rosette 3, this interface exposes concepts such as the assertion
stack and the path condition, which are part of the classicmerging semantics. InRosette 4, this inter-
face exposes concepts such as the symbolic state with assumptions and assertions, as defined by Sc .
The changes to the evaluator and the interface account for the major differences between the

two implementations. At the code level, this amounts to roughly 2,000 line insertions and deletions.
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The rest of the code base is shared (roughly 5,000 lines), including the datatypes and procedures
for operating on symbolic values. So both implementations share the same symbolic factory.

6.3 Validating Rosette 4 against Leanette with Solver-Aided Differential Testing

To gain confidence that Rosette 4 is correct, we perform differential testing [McKeeman 1998]
against Leanette. Our testing setup consists of a generator for constructing input programs and
environments, and an oracle for checking if the two evaluators produce equivalent results on the
same input.We use this setup to check that Rosette 4 behaves like Leanette on a total of 10,000 test
programs and environments. The rest of this section describes our test oracle, generator, and results.

Test oracle. Given a program e and symbolic environment Ê, the oracle compares the outputs
produced by Rosette 4(e, Ê, ⟨tt,tt⟩) and Leanette(n, e, Ê, ⟨tt,tt⟩), within a timeout of 40 seconds
and a fuel limit of n = 100. This comparison succeeds only when both outputs are symbolic
results, and these results are equivalent under every model, i.e., Rosette 4(e, Ê, ⟨tt,tt⟩) = r̂R ,
Leanette(n, e, Ê, ⟨tt,tt⟩) = r̂L , and ∀m.Jr̂RKR̂m = Jr̂LKR̂m . To implement the equivalence check, the
oracle imports r̂L into Rosette 4, and uses Z3 [De Moura and Bjørner 2008] to solve the query
(verify (assert (equal? Jr̂RKR̂ Jr̂LKR̂))). This query searches for a modelm, if any, under which
the two symbolic results evaluate to different concrete results according to equal?. The function
equal? considers its inputs to be equivalent if they have the same representation; e.g., two lists
are equal? if they have the same length and equal? elements, and two closures are equal? if they
have equal? lambda terms and environments. This equivalence relation behaves like the equality
relation = in Lean, so the oracle reflects the notion of equality used in our Lean formalization.

Test generator. Our test generator produces closed programs that couple λc expressions with
their symbolic environments. Each generated test is a valid Rosette program that consists of a
sequence of (define-symbolic x T) expressions, followed by an expression e from the λc grammar.
The definition sequence populates the symbolic environment by binding each free variable in e to
a fresh symbolic variable of type boolean or integer. More complex values can then be constructed
by the body e from these primitives. The tests are generated in two steps. First, the generator
uses fair enumeration combinators [New et al. 2017] to create a bijection η between the set of
natural numbers and the set of all possible test programs. The bijection η is set up so that larger
numbers tend to correspond to larger programs. Next, the generator uses η to convert random
natural numbers into test programs of varying sizes. In particular, the generator takes two inputs:
the number N of tests to generate, and an indirect bound k on the size of the generated tests. Given
these inputs, it produces N distinct tests by repeatedly calling η(random(2i )), where i increases
linearly from 0 to k , and random(2i ) generates a natural number from 0 to 2i uniformly at random.
This process can generate any test program given a suitable random seed, N , and k .

Example 9. To illustrate our differential testing setup, suppose that the generator produces the
two tests shown in Figure 7. Both tests are conditional expressions that branch on the value of the
boolean expression 0 ∗ n = 0, where n is a symbolic integer. Test 7a returns #t if this expression
is true and diverges otherwise. Test 7b errors if the expression is true and returns #t otherwise.
Applying the oracle to these tests, we find that Rosette 4 and Leanette behave differently on
7a and equivalently on 7b.

When applied to 7a, Rosette 4 produces Out(⟨tt,tt⟩,tt), and Leanette runs out of fuel. In fact,
Leanette will always run out of fuel on this program because its symbolic factory is unable to
reduce 0 ∗ n to 0. Rosette 4 is able to perform this reduction, so it terminates with the expected
value. Both of these outcomes are correct according to formalization (Section 5).
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1 (define-symbolic n integer?) ; Symbolic integer
2
3 (if (zero? (* 0 n)) ; If 0 * n = 0
4 #t ; then true
5 (let loop () ; else loop infinitely
6 (loop)))

(a) A program that terminates under Rosette 4

but does not terminate under Leanette.

1 (define-symbolic n integer?) ; Symbolic integer
2
3 (if (zero? (* 0 n)) ; If 0 * n = 0
4 (assert #f) ; then error
5 #t) ; else true

(b) A program that produces Halt(·) under

Rosette 4 but produces Out(·, ·) under Leanette.

Fig. 7. Two test programs that combine a λc expression and a symbolic environment. The programs are

shown in the Rosette syntax for brevity. The test oracle determines that Rosette 4 and Leanette differ on (a)

due to non-termination, and that they agree on (b) according to our equivalence relation.

Table 1. Summary of the testing results, which are bucketed by AST size. Under “Leanette state”, the “Sym”

column refers to the number of non-trivial resulting symbolic states in Leanette evaluation. The “Max” and

“Avg” columns are the maximum and average resulting symbolic state size among the non-trivial ones. Columns

under “Rosette 4 state” have the same meanings. “Validated?” column is the oracle output, where “✓” means

the evaluation results from both evaluators agree on all programs in a bucket.

Bucket (by AST size) Leanette state Rosette 4 state Leanette time Rosette 4 time

Range Count Avg Sym Max Avg Sym Max Avg Max (s) Avg (s) Max (s) Avg (s) Validated?

1 - 12 1,006 6 220 635 41 88 20 4 2.4 2.2 0.3 0.1 ✓
13 - 24 1,021 19 349 1,142 77 174 36 6 2.3 2.2 0.2 0.1 ✓
25 - 38 1,042 32 430 2,855 102 224 34 6 2.3 2.2 0.8 0.1 ✓
39 - 50 1,036 44 433 16,979 242 187 34 7 2.8 2.2 0.2 0.1 ✓
51 - 65 1,040 58 450 7,523 186 227 30 8 2.4 2.2 0.2 0.1 ✓
66 - 77 1,040 72 459 30,386 474 239 45 8 2.8 2.2 0.2 0.1 ✓
78 - 88 1,053 83 454 19,835 426 231 36 8 2.5 2.2 0.2 0.1 ✓
89 - 102 1,042 95 427 45,893 482 190 41 9 3.5 2.2 0.2 0.1 ✓
103 - 119 1,009 111 425 61,439 686 218 45 9 4.1 2.2 1.0 0.1 ✓
120 - 158 711 129 324 293,171 2,001 159 36 9 36.6 2.2 0.3 0.1 ✓

When applied to 7b, Rosette 4 produces Halt(⟨tt,ff⟩), and Leanette produces Out(σ ,tt), where
σ = ⟨tt, !(0 = (0 ∗ n))⟩. These symbolic results have different representations because, once again,
Rosette 4 reduces 0 ∗ n to 0 and Leanette does not. But they evaluate to the same concrete result
under every modelm, i.e., JHalt(⟨tt,ff⟩)KR̂m = JOut(σ ,tt)KR̂m , so the oracle considers them equivalent.

Test results. We validate Rosette 4 against Leanette on a set T of 10,000 randomly generated
test programs. For each program in T , we collect the oracle output and, for each evaluator, the
final symbolic state and the running time. Table 1 shows the test results, where T is partitioned
into buckets by AST size. The largest program in T consists of 158 expressions, and the average
program size is 63 expressions. Both Leanette and Rosette 4 terminate and produce a symbolic
result on every program in T , within the oracle timeout and fuel limit.
Using T , our testing setup quickly discovers an intentional semantics discrepancy between

Leanette and Rosette 4. In Leanette, the cons operator creates only lists. It takes as input a
value v0 and a list [v1, . . . ,vk ], and returns the list [v0,v1, . . . ,vk ]. In Rosette 4, cons takes as
input any two values and returns a pair, which represents a list when the second argument is list.
After we adjust the semantics of cons in Rosette 4 to match that of Leanette, we find that the
two evaluators behave equivalently on all programs in T , as shown in the last column of Table 1.

Table 1 also shows two sets of metrics that characterize the performance of these evaluators. The
“time” columns display the maximum and average evaluation time for all programs in a bucket. The
“state” columns show the number of non-trivial symbolic states produced by the evaluator, as well
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Table 2. Coverage results of the randomly generated programs. Each of the injected faults β violates soundness.
“✓” indicates that the injected fault is caught by the generated test setT (i.e., Rosette 4 and BadLeanette(β)
disagree on at least one program in T ).

Injected mistake (β ) Location Caught?

Make and(ba, bb ) = ba where ba and bb are non-literal symbolic booleans symbolic factory ✓
Make or(b, b) = tt where b is a non-literal symbolic boolean symbolic factory ✓
Make ôp(<, za, zb ) = (zb < za ) where either za or zb is a non-literal symbolic integer symbolic factory ✓
In CallOp, skip strengthen symbolic evaluator ✓
In Call, change the guards for evaluation of the body to be tt symbolic evaluator ✓
In CallBad, use the input symbolic state without asserting γ symbolic evaluator ✓
In Let, do not bind any variable symbolic evaluator ✓
In IfSym, swap not(truth(v̂)) and truth(v̂) when callingmergeR̂ (·, ·) symbolic evaluator ✓
In IfTrue and IfFalse, swap the conditions symbolic evaluator ✓
In Err, do Abort symbolic evaluator ✓
In Abort, do Err symbolic evaluator ✓

as the maximum and average size of the non-trivial states in each bucket. A state is trivial iff both
of its components are constant (ff or tt). The size of a state is the number of nodes in the graph
representation of its components. In particular, both Leanette and Rosette 4 represent symbolic
booleans as abstract syntax graphs. These graphs are trees in Leanette and DAGs in Rosette 4.

The data in Table 1 exhibits two notable trends. First, a large fraction of the computed states are
trivial: 60% for Leanette and 80% for Rosette 4. This trend is expected for randomly generated
programs, which have a high probability of containing trivial errors (e.g., type errors). Second,
Rosette 4 is orders-of-magnitude more efficient than Leanette in terms of both running time and
state size. This trend is also expected because Rosette 4 uses a heavily optimized symbolic factory,
while Leanette uses a naïve one. In the worst case, Leanette generates a symbolic state that is
exponential in program size. Rosette 4, in contrast, generates polynomially sized states.

Coverage. To gain further confidence in our test results, we inject 11 faults into Leanette, one
at a time, and check that they are uncovered by at least one test in T . For each fault β , we create
a new evaluator BadLeanette(β) that applies β to Leanette, and we test Rosette 4 against
BadLeanette(β) on T . Table 2 describes the faults and the results of the differential testing. Three
faults are in the symbolic factory, and the rest are in the implementation of the Sc rules. Our test
suite discovers all of them, giving us confidence that Rosette 4 correctly implements Sc .

7 UTILITY AND PERFORMANCE OF AN Sc EVALUATOR: EXPERIMENTS

This section evaluates the utility and performance of Rosette 4 by comparing them to those of
Rosette 3. Our evaluation aims to answer the following research questions:
(1) Can the interface provided by an Sc evaluator simplify the implementation of client tools?
(2) Can an Sc evaluator match the performance of a classic evaluator when used within state-of-

the-art solver-aided tools?
We conduct two sets of experiments and find a positive answer to both questions.

7.1 Comparing the Interface of Rosette 4 and Rosette 3

We evaluate the utility of Sc by porting two sets of benchmarks to Rosette 4, developed in prior
work on SymPro [Bornholt and Torlak 2018] and Jitterbug [Nelson et al. 2020]. SymPro is a
tool for profiling the performance of symbolic evaluators, and its benchmarks are drawn from
the evaluation suites of 15 published verification and synthesis tools. Each SymPro benchmark
applies one of these tools to its slowest available input(s). The Jitterbug benchmarks are drawn
from the evaluation suite of Jitterbug, a framework for developing and verifying just-in-time
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Table 3. Differences between the implementations of the ported and original benchmarks.

Benchmark Rosette 3 LoC Rosette 4 LoC LoC diff Solver

Bagpipe [Weitz et al. 2016] 2,643 2,643 +2 -2 Z3
Bonsai [Chandra and Bodik 2018] 437 437 +1 -1 Boolector
Cosette [Chu et al. 2017] 774 774 +0 -0 Z3
Ferrite [Bornholt et al. 2016] 348 348 +2 -2 Z3
Fluidics [Willsey et al. 2019] 98 98 +0 -0 Z3
GreenThumb [Phothilimthana et al. 2016] 3,554 3,556 +13 -11 Boolector
IFCL [Torlak and Bodik 2014] 483 483 +13 -13 Boolector
MemSynth [Bornholt and Torlak 2017] 13,303 13,307 +8 -4 Z3
Neutrons [Pernsteiner et al. 2016] 37,174 37,174 +2 -2 Z3
Nonograms [Butler et al. 2017] 3,368 3,374 +11 -5 Z3
Quivela [Amazon Web Services 2018] 1,010 1,009 +10 -11 Z3
RTR [Kazerounian et al. 2018] 1,649 1,640 +12 -21 CVC4
SynthCL [Torlak and Bodik 2014] 2,257 2,256 +42 -43 Boolector
Wallingford [Borning 2016] 2,532 2,533 +12 -11 Z3
WebSynth [Torlak and Bodik 2014] 1,181 1,189 +14 -6 Z3
Jitterbug [Nelson et al. 2020] 29,280 28,935 +478 -823 Boolector

(JIT) compilers for the Berkeley Packet Filter (BPF) [Fleming 2017] language in the Linux kernel.
Jitterbug performs verification on each BPF opcode individually, which amounts to 668 verification
queries across the six architectures supported by Jitterbug (Arm32, Arm64, RV32, RV64, x86-32,
and x86-64). All tools in our benchmark sets were originally developed in Rosette 3.
As we saw in Section 6.2, Rosette 4 extends the Rosette 3 language to include assume ex-

pressions, and it exposes different constructs for symbolic reflection. To port our benchmarks to
Rosette 4, we adapted their code to use these new constructs and the extended language. We detail
the porting effort for the SymPro benchmarks next, and then describe how Rosette 4 enabled us
to simplify the implementation of Jitterbug.

7.1.1 Porting SymPro Benchmarks. Table 3 summarizes the differences between the ported and the
original code for each benchmark. The first four columns report the line count for both implementa-
tions, and the number of insertions and deletions by which the ported code differs from the original
code. The last column shows which SMT solver is used for a given benchmark: Z3 v4.8.8 [De Moura
and Bjørner 2008], Boolector v3.2.1 [Niemetz et al. 2014], or CVC4 v1.8 [Barrett et al. 2011].

As the data in Table 3 indicates, porting the SymPro benchmarks to Rosette 4 required relatively
few changes to their code. Most changes were mechanical: we either adapted the code to use the new
symbolic reflection constructs, or replaced #:assume clauses with equivalent assume expressions.
One exception is the RTR tool [Kazerounian et al. 2018], which we simplified and made faster (see
Table 4a) using assume expressions. RTR is a type checker for a refinement type system for Ruby, and
it works on an intermediate verification language that includes assume statements. Since first-class
assumptions are not available in Rosette 3, RTR implements assume statements as early exits
that return a special value. We removed this custom code and implemented the assume statement
directly using the assume expression. It took one author 4 days to port all 15 tools to Rosette 4.

7.1.2 Porting Jitterbug. Jitterbug is the most complex code base we ported to Rosette 4 (see
Table 3). At the core of Jitterbug’s proof strategy is its per-instruction correctness specification:
given a source instruction and a JIT context (e.g., compiler configurations), Jitterbug proves that
the execution of the target instructions produced by the JIT exhibits the same behavior as that of
the source instruction. To do so, Jitterbug first symbolically evaluates the JIT implementation
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with a BPF instruction and a JIT context to produce a symbolic representation of all possible
sequences of target instructions. Next, it symbolically evaluates both the source instruction and
target instructions on source and target states, respectively, to encode their semantics. Finally, it
checks that the resulting source and target states are equivalent, assuming that the original source
and target states are equivalent. This requires Jitterbug to model the assumptions made by the
JIT, such as the well-formedness of BPF instructions and the memory layout of the Linux kernel.
Since Rosette 3 does not support assumptions, Jitterbug implements its own system for

tracking assumptions. The systemworks by escaping to Racket to capture and store the assumptions
outside of symbolic evaluation. It then reintroduces them as preconditions in later assertions. This
process is subtle and does not preserve legality, requiring careful manual reasoning to ensure that
the final verification query, which takes the form pre ∧ ¬post, is sound (c.f., Example 7).
When porting Jitterbug to Rosette 4, we replaced this workaround with assume expressions.

This change simplified both the Jitterbug implementation and the formulation of the top-level
correctness specification, which no longer has to recover and incorporate the stored assumptions.
The legality guarantee provided by Rosette 4 also increased the confidence in the soundness of
the verification queries emitted by Jitterbug. The porting process took one author 2 weeks. Our
experience shows that the interface exposed by Rosette 4 can simplify the implementation of a
complex client tool, and that the developer burden to utilize these new features is low.

7.2 Comparing the Performance of Rosette 4 and Rosette 3

To evaluate the performance ofSc , we compare the running time and encoding size of Rosette 4 and
Rosette 3 on the ported and original version of each benchmark, respectively. We collected all per-
formance data using Racket v8.1 on an Intel Core i5-6600K at 3.50 GHz with 16GB of RAM. Table 4a
shows the results for each SymPro benchmark, and Table 4b summarizes the results across all Jit-
terbug benchmarks. Both figures report the total time, symbolic evaluation time, solving time, and
encoding size under Rosette 4 and Rosette 3. The encoding size is given as the number of symbolic
terms generated during symbolic evaluation. This number overapproximates the size of the encoding
sent to the solver and offers a roughmeasure of the total amount of work performed by the evaluator.
The symbolic evaluation time includes both the time spent to generate the encoding and to pipe it to
the solver. The solving time is computed as the difference between the wall clock time and the CPU
time consumed by Racket. Finally, Table 4c reports the best, worst, and average ratio of the Rosette 4
and Rosette 3 performance across all metrics and benchmarks. For example, comparing the sym-
bolic evaluation time of the ported and original SymPro benchmarks, we find that the ported ones
are up to 2.1× slower and up to 3.8× faster than the original ones, with an average speedup of 13%.
The analysis in Table 4c shows that, on average, Rosette 4 generates 6–9% more terms than

Rosette 3, taking roughly 10–20% less time to do so, and producing an encoding that is about
5–9% faster to solve. To understand the difference in the number of generated terms, recall from
Section 4.3 that Sc updates the assumption component of the symbolic state using assume(σ , b̂),
while the classic merging semantics uses assume

′(σ , b̂). In the worst case, the symbolic factory for
Rosette 4 and Rosette 3 creates 3 terms to represent assumes(assume(σ , b̂)) and only 1 term to
represent assumes(assume

′(σ , b̂)). Additionally, Rosette 3 uses a simpler function for merging two
symbolic states, which generates no new terms, while the Sc function mergeΣ(σ ,G) can generate
up to 4|G |+2 terms. These two differences are the main reason why Rosette 4 emits up to 8×more
terms than Rosette 3 in our benchmarks. We avoid this blowup in the average case by specializing
Rosette 4 with rewriting rules tailored for the terms generated by assume(σ , b̂) and mergeΣ(σ ,G).
Given that Rosette 4 emits more terms than Rosette 3, it may seem surprising that it is, on

average, slightly faster than Rosette 3, and that the resulting formula is slightly easier to solve. In
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Table 4. Performance results for the ported and original SymPro (4a) and Jitterbug (4b) benchmarks, along

with statistics (4c) summarizing the performance ratios between the ported and original code. In 4a and 4b,

the columns “Total (s)”, “Eval. (s)”, and “Solving (s)” are the elapsed wall clock time, symbolic evaluation time,

and solving time respectively. The column “Terms (×103)” indicates the encoding size. The average ratio in 4c

is the geometric mean of the per-benchmark ratios for a given performance metric.

(a) Performance results for the 15 ported and original SymPro benchmarks.

Rosette 3 Rosette 4

Benchmark Total (s) Eval. (s) Solving (s) Terms (×103) Total (s) Eval. (s) Solving (s) Terms (×103)

Bagpipe 23 22 < 1 47 23 23 < 1 48
Bonsai 20 18 2 664 40 37 3 1,222
Cosette 15 7 7 131 15 8 8 154
Ferrite 19 12 7 34 26 12 14 40
Fluidics 19 6 13 284 23 7 17 308
GreenThumb 53 7 46 239 4 2 2 74
IFCL 157 10 147 383 119 10 109 438
MemSynth 20 18 2 61 22 20 2 163
Neutrons 36 36 < 1 444 10 10 < 1 172
Nonograms 9 3 5 51 10 3 7 73
Quivela 31 29 2 1,113 34 31 4 1,340
RTR 329 312 18 741 113 82 32 1,106
SynthCL 258 13 246 726 253 15 238 732
Wallingford 5 < 1 4 4 5 < 1 4 5
WebSynth 10 10 < 1 1,012 16 16 < 1 778

(b) Performance results for the 668 ported and original Jitterbug benchmarks.

Evaluator Total (s) Eval. (s) Solving (s) Terms (×103)

mean med. max mean med. max mean med. max mean med. max

Rosette 3 50 22 9,963 2 1 69 48 20 9,894 119 15 1,678
Rosette 4 38 20 4,100 1 1 73 36 19 4,027 120 23 1,837

(c) Performance ratios between the ported and original code for SymPro and Jitterbug benchmarks.

Benchmark Total Eval. Solving Terms

best worst avg. best worst avg. best worst avg. best worst avg.

SymPro 0.07 1.99 0.81 0.26 2.10 0.87 0.04 2.21 0.95 0.31 2.65 1.06
Jitterbug 0.23 6.03 0.91 0.33 2.18 0.87 0.22 6.48 0.91 0.79 8.12 1.09

general, these differences are difficult to fully explain since they depend on many factors, and the
behavior of both systems is sensitive to small initial differences, e.g., a factory simplification that
triggers in one system but not the other. With this caveat in mind, our experience suggests that
the observed difference is due to two factors. First, at every point during and after the evaluation,
Rosette 4 operates on a more constrained symbolic state than Rosette 3. Both of its state compo-
nents carry terms that are not available in Rosette 3 and that may trigger additional simplifications.
Second, thanks to legality, Rosette 4 emits the query assumes(σ ) ∧ ¬asserts(σ ) (Definition 7),
while Rosette 3 emits ¬asserts(σ ). It is sound for Rosette 4 to emit just ¬asserts(σ ), but we
find that the redundant formula tends to elicit better performance in practice; for example, the
Jitterbug benchmarks run on average 25% slower without the redundant formula. Overall, even
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though Rosette 4 produces a larger encoding than Rosette 3, our results show that it matches
the runtime performance of Rosette 3 in a wide range of tools.

8 CONCLUSION

This paper presented the first formal framework for reasoning about reusable symbolic evaluators.
The framework is based on Sc , a new symbolic semantics with merging. This semantics is defined
with respect to the symbolic factory interface, which abstracts away the details of how symbolic val-
ues are represented, created, and manipulated. As such, Sc admits a wide range is implementations.
We use Lean to prove that Sc is sound and complete with respect to the concrete semantics of its tar-
get language, λc , which extends Core Scheme with assumptions and assertions. We also prove that
Sc preserves two properties, legality and reducibility, that are key to reusing a symbolic evaluator in
a client tool. Leanette and Rosette 4, two implementations of Sc in Lean and Racket, respectively,
show that Sc provides a general contract for building and validating reusable evaluators. By porting
16 published verification and synthesis tools from Rosette 3 to Rosette 4, we demonstrate that
Sc provides a practical interface for client tools: Rosette 4 both simplifies the implementation
of two of the benchmarks and matches the performance of Rosette 3 across these tools. All source
code accompanying this paper is publicly available at https://github.com/emina/rosette.
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