
Technical Report UW-CSE-2019-10-01

A note on verifying information flow control systems with Nickel

Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney,
James Bornholt, Emina Torlak, Xi Wang

University of Washington

October 2019

Abstract
This technical report provides supplementary material for the paper Nickel: A Framework for Design and Verifi-

cation of Information Flow Control Systems [7]. It documents some design trade-offs we have considered during the
development of both the Nickel framework and systems verified using Nickel.

1 Intransitivity
Practical systems generally need downgrading operations for intentional declassification and endorsement; otherwise,
information continues to flow in one direction and there is no way to get results out of these systems. Transitive
noninterference is too restrictive for expressing policies for such downgrading operations. Therefore, Nickel adopts a
general form of intransitive noninterference [6]: information can flow from A to B and from B to C, but not necessarily
from A to C directly; in other words, can-flow-to relations can be both transitive and intransitive. Below we detail this
decision in the context of NiStar.

NiStar is an OS kernel for decentralized information flow control (DIFC) [5]. It provides a small number of kernel
object types. Each object is associated with a triple of ⟨secrecy, integrity, ownership⟩ labels, where each label is a set
of tags (i.e., opaque integers). At the core of NiStar’s information flow policy is the following can-flow-to relation:

Definition 1. Information can flow from L1 = ⟨S1, I1,O1⟩ to L2 = ⟨S2, I2,O2⟩, denoted as L1↝ L2, if and only if
(S1 −O1 ⊆ S2 ∪O2) ∧ (I2 −O2 ⊆ I1 ∪O1).

This can-flow-to relation is intransitive: L1↝ L2 and L2↝ L3 together do not imply L1↝ L3. Like in many other
DIFC systems (e.g., HiStar [9] and Flume [4]), this flexibility enables users to declassify private data as they deem
appropriate. For instance, Alice may remove secrecy tags from her files (based on ownership) and copy them to a
public directory for sharing; she may also set up a gate, which provides additional ownership tags to threads that enter
the gate and allows other users to access her data in a controlled way.

We initially considered using transitive noninterference with two workarounds to support NiStar’s policy. The
first workaround was to follow the approach taken by Ironclad [3]: carve out the downgrading part of each operation,
prove transitive noninterference for the parts before and after downgrading, and prove state-machine refinement for
the downgrading part. This workaround was not suitable for NiStar, as downgrading was an essential functionality of
the OS kernel and it was unclear how to separate the downgrading part of each system call. The second workaround
was to consider the universal set of ownership tags as the domain of each operation, which effectively made the policy
transitive. This workaround was able to catch many covert channels, however it is too permissive: for instance, it was
unable to catch a bogus system call that allowed Alice to declassify another user’s data.

The formulation of noninterference used by Nickel supports intransitive policies such as the one in NiStar: it allows
Alice to declassify her own data (whether her user-space declassifiers are correct is an orthogonal problem), and also
prevents her from declassifying other users’ data.

2 State-dependent dom
Let A, D, and S denote the set of actions, domains, and states, respectively. Classical noninterference uses a state-
independent dom function (A→ D), which associates each action with a domain. However, as many system calls query

1



the system state to decide the currently running process or thread, the dom function also needs to look into the state
to decide the resulting domain. As a workaround, we initially tried to fold the system state into an action, as an extra
argument to every system call. This workaround complicated both unwinding and refinement proofs: if we added the
extra argument to both the specification and implementation, this would introduce performance overhead; if we added
the the extra argument to the specification only, extra axioms or trusted code were needed to match the specification
with the implementation.

To avoid these issues, Nickel uses a state-dependent dom function (A×S → D). This change slightly complicates the
definition of noninterference, which we find acceptable, and requires additional conditions for unwinding. We initially
used the following extra unwinding condition:

I(s) ∧ I(t) ∧ s
u
≈ t ∧ dom(a, s)↝u⇒ dom(a, s) = dom(a, t).

We replaced it with two weaker conditions as described in the paper:

I(s) ∧ I(t) ∧ s
dom(a,s)

≈ t ⇒ dom(a, s) = dom(a, t)

I(s) ∧ I(t) ∧ s
u
≈ t ⇒ (dom(a, s)↝u⇔ dom(a, t)↝u).

3 Formulations of noninterference
We have considered two formulations as the top-level definition: noninterference and a variant called noninfluence [8].
Noninterference is defined in Sigurbjarnarson et al. [7]. Noninfluence is defined as follows:

Definition 2 (Noninfluence). Given a system M = ⟨A,O, S, init, step, output⟩, a policy P = ⟨D,↝, dom⟩, and an
observational equivalence ≈,M satisfies noninfluence for P and ≈ if and only if the following holds for any trace tr ,
domain u, reachable states s and t, and purged trace tr′ ∈ purge(tr, u, t):

(∀v ∈ sources(tr, u, s). s v
≈ t) ⇒ run(s, tr) u

≈ run(t, tr′).

Figure 1 shows the logical implications among these formulations: unwinding conditions together imply both non-
influence and noninterference; noninfluence plus output consistency implies noninterference. Note that noninterference
depends on a policy only, while noninfluence depends on both a policy and an observational equivalence.

noninfluence noninterference

unwinding

+ output consistency

Figure 1: Logical implications among noninfluence, noninterference, and unwinding.

Since unwinding conditions imply both noninfluence and noninterference, developers may choose either one as the
top-level specification of their systems and use Nickel in the same way, though these two formulations have different
trusted components and interpretations. If developers trust the policy only (which is often much simpler than the
observational equivalence), we consider noninterference as a reasonable definition, and the observational equivalence is
an untrusted proof input. However, if developers choose to additionally trust the observational equivalence, noninfluence
is a useful definition as it provides more detail on which subset of the system state is involved in certain flows.

As an example, consider A↝ B, B↝C, but A C, where B is the domain of a downgrading operation. One
may use noninterference as the top-level definition and trust the state-machine specification of B that describes how
B restricts the indirect influence from A to C. Alternatively, one may use noninfluence as the top-level definition and
trust the observational equivalence that describes the subset of the system state B may access.

We consideredmore restrictive formulations of noninterference in terms of downgrading, such as ta-security [2: §3];
we also considered formulations with dynamic policies (i.e., state-dependent can-flow-to) [2: §4]. We decided to keep
the current formulation as it was simpler for understanding and verification, and it was sufficient for the systems we
verified; it would be interesting to further investigate these formulations.

2



4 Experience with using Nickel
NiStar. We initially followed HiStar’s design to allow an object to be linked by multiple containers. Such links
complicate the invariant on quotas, as the kernel would need to deduct the quota frommultiple containers. Furthermore,
they require reference counting and a more complex naming scheme—to avoid covert channels from reference counters,
HiStar uses the pair ⟨container-ID, object-ID⟩ to refer to an object inmost system calls, rather than an object-ID alone [9].
We decided to not support multiple links in NiStar; therefore, an object-ID was sufficient for naming an object.

In NiStar, a thread may free an object from a container only if it can write to both the object and the container.
This closes a channel in HiStar but also allows users to create “zombie” objects that cannot be reclaimed by anyone in
the system. We initially considered designing a garbage collector with domain ⟨∅,U,∅⟩: it would be able to free any
object in the system given its universal integrity, but would not be able to take any user input to decide which object to
free given its empty secrecy and ownership. A usable garbage collector may need to be trusted with more power (e.g.,
universal ownership), or the system administrator may consider it legitimate to create “zombie” objects.

To avoid a channel in scheduling, the scheduler’s decision on which thread to run next should be independent
of other domains. We considered several scheduler designs: (1) a naïve scheduler that enumerates every object ID
in the system for scheduling, (2) a cooperative yield system call that allows thread T to yield to thread T ′ only if
LT ↝LT ′ , and (3) a hierarchical scheduler that walks the container hierarchy. We decided against these designs due to
performance and flexibility concerns, and instead adapted the exokernel scheduler to DIFC.

NiKOS. We have implemented two versions of NiKOS. The first one closely follows mCertiKOS [1]. While the
policy is simple (information can flow between the scheduler and any process, but not directly between two processes),
a downside is that it can hide other covert channels, as two processes may exploit the scheduler to communicate
information. One might use fine-grained domains rather than processes as the policy, or choose noninfluence as
the top-level specification, additionally trusting the observational equivalence; both will complicate the (trusted)
specification.

As an experiment, we have implemented a second version of NiKOS, referred to as NiKOS+, by removing flows to
the scheduler. The policy is shown in Figure 2: information can flow from each process to its descendants and from the
scheduler to each process, but not from a process to the scheduler or to a non-descendant process. This policy ensures
isolation between any two sibling processes, and more generally, between each process and its non-descendants.

p4 p5 p6 p7

⋮ ⋮ ⋮ ⋮

p2 p3

p1

scheduler

Figure 2: The isolation policy of NiKOS+. Each process can have up to two child processes in this case.

To implement this policy, NiKOS+ uses a hierarchical scheduler, which matches its PID allocation scheme. It
maintains a global array of PIDs. Initially, the array contains PID 1 in every slot; when the spawn system call creates a
child process pi , it updates the “subspace” of the slots (which correspond to all its descendants) with PID i. For yield,
the scheduler simply cycles through the array and schedules the process as specified in each slot.

ARINC 653. Following previous work [10], we use a single transmitter domain in the information flow policy for
ARINC 653. This policy is unable to catch covert channels due to mixing data from different ports. A better policy
would be to break the transmitter domain to smaller domains among communication ports.

3



Acknowledgments
We thank Nickolai Zeldovich for discussions on HiStar and noninterference.

References
[1] David Costanzo, Zhong Shao, and Ronghui Gu. End-to-end verification of information-flow security for C and

assembly programs. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 648–664, Santa Barbara, CA, June 2016.

[2] Sebastian Eggert. Security via Noninterference: Analyzing Information Flows. PhD thesis, Kiel University, July
2014.

[3] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-end security via automated full-system verification. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pages 165–181, Broomfield, CO, October
2014.

[4] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. Information flow control for standard OS abstractions. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP), pages 321–334, Stevenson, WA, October 2007.

[5] Andrew Myers and Barbara Liskov. A decentralized model for information flow control. In Proceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP), pages 129–147, Saint-Malo, France, October
1997.

[6] John Rushby. Noninterference, transitivity, and channel-control security policies. Technical Report CSL-92-02,
SRI International, December 1992.

[7] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Emina Torlak, and XiWang. Nickel:
A framework for design and verification of information flow control systems. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pages 287–306, Carlsbad, CA, October
2018.

[8] David von Oheimb. Information flow control revisited: Noninfluence = noninterference + nonleakage. In
Proceedings of the 9th European Symposium on Research in Computer Security, pages 225–243, SophiaAntipolis,
France, September 2004.

[9] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and DavidMazières. Making information flow explicit in
HiStar. In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 263–278, Seattle, WA, November 2006.

[10] Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu. Reasoning about information flow security of
separation kernels with channel-based communication. In Proceedings of the 22nd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages 791–810, Eindhoven, The
Netherlands, April 2016.

4


	Intransitivity
	State-dependent dom
	Formulations of noninterference
	Experience with using Nickel

