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Abstract

Modern image storage services, especially those asso-
ciated with social media services, host massive collec-
tions of images. These images are often replicated at
many different resolutions to support different devices
and contexts, incurring substantial capacity overheads.
One approach to alleviate these overheads is to resize
them at request time. However, this approach can be in-
efficient, as reading full-size source images for resizing
uses more bandwidth than reading pre-resized images.
We propose repurposing the progressive JPEG standard
and customizing the organization of image data to reduce
the bandwidth overheads of dynamic resizing. We show
that at a PSNR of 32 dB, dynamic resizing with progres-
sive JPEG provides 2.5× read data savings over baseline
JPEG, and that progressive JPEG with customized en-
code parameters can further improve these savings (up
to 5.8× over the baseline). Finally, we characterize the
decode overheads of progressive JPEG to assess the fea-
sibility of directly decoding progressive JPEG images on
energy-limited devices. Our approach does not require
modifications to current JPEG software stacks.

1 Introduction
Images are ubiquitous on the modern web. With the rapid
expansion of social media services, the largest social me-
dia networks now host billions of images [8]. Image
hosts face the challenge of handling the massive rates
at which users upload images, especially as scaling of
cost per gigabyte slows [7]. This issue is compounded
by the need to store each image at multiple resolutions to
support different contexts or devices. In 2010, Facebook
stored up to 4 different versions of each image [4], later
reporting that dynamic resizing was also performed [8].
dynamic resizing saves capacity by generating low res-
olution copies of images on the fly without committing
them to storage.

Faced with a similar problem, Flickr [1] switched
to dynamic resizing and reported that doing so helped

to eliminate the need for storage capacity upgrades for
an entire year. While dynamic resizing is an attractive
method for reducing storage overheads, it introduces two
main trade-offs. First, computation is traded for capacity:
when an uncached image is requested, the image must
be decoded and resized. Second and perhaps more im-
portantly, bandwidth is traded for capacity: reading the
entire source image for resizing can waste bandwidth.
Bandwidth can be precious in cold storage scenarios that
sacrifice performance for cost and density [5] or when an
access misses in the cache.

This paper proposes repurposing progressive JPEG to
reduce both read bandwidth and storage overheads. The
progressive JPEG standard specifies a variant of JPEG
images originally designed for bandwidth-constrained
networks. In a progressive JPEG image, image data is
partitioned and arranged by frequency content instead of
by vertical position in an image (scanline), allowing for
a lossy preview before the entire image has been down-
loaded. We demonstrate that by repurposing progres-
sive JPEG, a significant portion of read bandwidth can
be saved by reading only the necessary image data for
resizing. Additionally, we show that tuning encode-time
parameters to match predefined image sizes can further
reduce read bandwidth.

Finally, we characterize the cost of decoding cus-
tom progressive JPEG directly on the client relative to
decoding resized baseline images. We find that the
computation–bandwidth trade-off favors transcoding im-
ages on the server side, where the computational costs
are comparable to a baseline dynamic resizing scheme.

2 Background: Progressive JPEG
The progressive JPEG standard was originally de-
signed to allow partially transmitted images to be pre-
viewed [17]. Progressive JPEG works by exploiting the
fact that partitioning image data in the frequency domain
from low to high frequency roughly corresponds to par-
titioning image data from coarse to fine details. By ini-



1 2

...

3

...

Figure 1: Sketch of Progressive JPEG Encoding: 1. Images
are divided into 8×8 macroblocks. 2. Intensity values are
transformed to the frequency-domain using a DCT. Red ar-
rows indicate the low to high frequency order of coefficients. 3.
Highlighted regions denote scans.

tially decoding only low frequency data, a preview can
be rendered with an incomplete image file.

As with baseline JPEG images, progressive JPEG
encoding involves transforming image data to the fre-
quency domain with a discrete cosine transform (DCT).
In the frequency domain, intensity values become fre-
quency coefficients; in the case of JPEG, there are 64 co-
efficients for each 8× 8 pixel region. Progressive JPEG
partitions frequency coefficients into groups called scans.
Figure 1 shows a sketch of the progressive JPEG en-
code process and partitioning of scans. A single scan can
contain a single coefficient, an approximation of a sin-
gle coefficient, multiple coefficients, or approximations
of multiple coefficients; the fundamental property is that
scans contain refinements of image data. Only the first
scan is necessary to display a low quality image preview.

3 Approach
In order to resize a baseline JPEG image to a reduced
resolution, the full image must be read. We repurpose
progressive JPEG, reading only the scans necessary for a
specific image quality for the resized image. To further
reduce the amount of data that must be read, we tune
progressive JPEG parameters to match predefined image
resolutions. We specify resolutions relative to source im-
ages (e.g. 10% of a 500×500 image is a 50×50 image).

3.1 Defining Image Quality

Using progressive JPEG and dynamic resizing in place
of static baseline images requires an image quality met-
ric and quality threshold to determine when have we read
enough image data. For each resolution, we define im-
age quality using the peak signal-to-noise ratio (PSNR).
To compute the PSNR, the reduced resolution image
(which may be lossier) is compared against a source im-

age scaled to the same resolution. For our experiments,
we choose a PSNR threshold of 32 dB as the cutoff
where no additional image data (or scans) of a progres-
sive JPEG image needs to be read. Our technique of cus-
tomizing progressive JPEG is orthogonal to the choice of
quality metric and threshold, but higher quality thresh-
olds will reduce savings.

3.2 Tuning Progressive JPEG Encoding

We used the jpegtran [11] transcoder, which allows the
groupings of frequency coefficients and their successive
approximations in scans to be customized. We imple-
ment a greedy algorithm that enumerates groupings of
coefficients (scan configurations) and chooses a config-
uration based on the resulting PSNR value. Configura-
tions are enumerated by adding coefficient approxima-
tions until the PSNR target is met; this process is re-
peated for all predefined resolutions.

The algorithm is characterized by the following pseu-
docode which finds the next coefficient approximation to
include; some details such as color channels are omitted.

best psnr = 0;
best coeff = None;
for coeff ∈ (0,max coeff(config)+ c depth) do

if approx[coeff] = 0 then
continue;

end if
//approx[] is initialized to a depth
temp approx = approx[coeff] - 1;
temp config = config + (coeff, temp approx);
psnr = calc psnr(source image, temp config);
if psnr > best psnr then

best coeff = (coeff, temp approx);
best psnr = psnr;

end if
end for
return best coeff;

We tune the coefficient depth (c depth) parameter
used by the greedy algorithm, as it can reduce the search
time by pruning the enumerated configurations. We find
that reducing this parameter leads to more space-efficient
configurations, perhaps by pruning configurations that
are locally optimal (in terms of PSNR) but inefficient.

An artifact of the jpegtran encoder is that it is lim-
ited to at most 100 scans in a given image. This limit
also effectively constrains the maximum approximation
depth (a depth) parameter for images where more scans
are needed for approximation refinements. However, to
our benefit, the encoder also supports specifying multiple
frequency coefficients (within the same color channel)
that share the same approximation level in a single scan.
This feature allows us to work around the 100 scan limit
in many cases; we implement a simple algorithm that
identifies the longest intervals of coefficients that share
approximation levels and merges these coefficients into
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Figure 2: Sketch of a dynamic resizing scheme using custom
progressive JPEG. Given an input image and predefined target
resolutions (a), a suitable scan configuration is found. This
process produces a mapping (b) of resolutions to scans (file
offsets in bytes). Given a requested image and resolution (c),
the necessary scans are read and the image transcoded.

scheme stored data
baseline (static) stores source, pre-resized im-

ages
baseline (dynamic) stores source images
progressive (dynamic) (ours,
naı̈ve)

stores source images in pro-
gressive format

custom progressive (dynamic)
(ours, preferred)

stores source images in tuned
progressive format

Table 1: Description of each evaluated scheme. The first two
schemes represent baselines used by current systems.

single scans. “Merging” can also be done with the first
(DC) coefficients across channels. Merging allows us to
encode images using configurations that would otherwise
exceed the 100 scan limit of the encoder. Still, when this
limit is exceeded, we reduce the maximum approxima-
tion depth used by the greedy algorithm.

3.3 Proposed Read-Write Process

We envision a read/write scheme (Figure 2) where, at
write time, files are losslessly transcoded using a cus-
tom scan configuration as they are added to the system.
At read time, only the necessary scans are read before
the resulting image is transcoded to baseline JPEG. The
mapping between the requested resolution and how many
scans to read (offset within the file) is a result of the cus-
tom progressive JPEG configuration process.

4 Evaluation
We evaluate the storage overheads (capacity, bandwidth)
required for the four storage schemes shown in Table 1.
For each approach, we evaluate the storage overheads
when three image resolutions in addition to the original
may be requested: 10%, 25%, and 50%. For our cus-
tom progressive JPEG scheme, we also evaluate the com-

pute overheads relative to dynamic resizing with base-
line JPEG images. This comparison attempts to answer
the question of whether it is beneficial to offload resizing
from the image host to the requesting client—an option
not possible with dynamic resizing on baseline images.

4.1 Compute Overheads

Many existing JPEG decoders support progressive JPEG
and custom progressive JPEG, raising the question of
whether progressive JPEG images should be served di-
rectly to clients without transcoding to baseline JPEG.
However, decoding progressive JPEG images is more
computationally expensive than decoding (equivalent)
baseline images [12]. We therefore consider the com-
putational overheads of two schemes: (1) the preferred
scheme where custom progressive JPEG images are
transcoded to baseline images on the server side, and
(2) where custom progressive JPEG images are served
directly to the client, offloading computation from the
server. Offloading transcode (2) is not possible when us-
ing baseline images as it would be equivalent to sending
the entire source image. For server side transcode (1), we
calculate the overhead by measuring the time to decode
a custom progressive JPEG image versus a full baseline
source image for resizing. For client side decode (2),
we calculate overhead by measuring the time it takes to
decode a custom progressive JPEG versus a previously
resized baseline image.

4.2 Dataset and Encoder

We perform our evaluation with the MIRFLICKR [9]
dataset, using 24,988 JPEG images with an average res-
olution of 462×399. We use the original images as
the source baseline JPEG images and the ImageMag-
ick convert [10] tool to generate resized baseline im-
ages. For progressive JPEG images, we use jpegtran

with the -optimize and -progressive flags. For pro-
gressive JPEG images with custom scan configurations,
we use jpegtran with the -progressive and -scans

[file] flags. In all cases, jpegtran performs transcod-
ing losslessly. We also iteratively reduce the quality level
parameter until the PSNR drops below 32 dB to avoid
inflating the capacity usage of static baseline images.
Still, the quality level of the resized baseline images is
not strictly equivalent; we compute PSNR on progressive
images before they have been re-encoded to baseline im-
ages. For many (static baseline) images resized to 10%
at a quality setting of 100, we observed that the PSNR
was below 32 dB despite acceptable visual quality.

5 Results
Overall, we find that dynamic resizing dramatically re-
duces storage overheads significantly (by 41%). Addi-
tionally, using custom progressive JPEG for dynamic re-
sizing yields the most efficient use of storage bandwidth.
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Figure 3: Storage utilization (left) and read sizes measured by
the amount of data read to achieve a PSNR of at least 32 dB
(right). Note that the PSNR of the resulting images with each
scheme can be different despite this lower-bound: default pro-
gressive JPEG overshoots the quality target. Overall, dynamic
resizing schemes provide similar and substantial storage sav-
ings over static resizing. Custom progressive JPEG provides
the most bandwidth savings (up to 5.8× vs. baseline).

5.1 Storage Capacity

Unsurprisingly, storing baseline images along with re-
sized images uses the most storage capacity (Figure 3).
Progressive JPEG is slightly more space-efficient than
baseline JPEG [15], though all dynamic resizing ap-
proaches are similar in storage utilization. Normalized
to dynamic baseline JPEG, dynamic custom progres-
sive JPEG incurs 0.3% storage overhead while dynamic
progressive JPEG provides 6.0% storage savings. Cus-
tom progressive JPEG likely suffers the small additional
overhead due to the increased number of scans.

5.2 Read Bandwidth

We consider the case where the requested resolutions of
images are not cached1. We estimate the read bandwidth
requirements of each method using the amount of data
read necessary to achieve a satisfactory PSNR for all
24,988 images. Here, baseline pre-resized images are
omitted because their PSNR values were not comparable;
pre-resized images should offer competitive if not better
bandwidth savings relative to custom progressive JPEG.
A substantial portion of read bandwidth can be saved just
by using progressive JPEG for dynamic resizing: 59%
for 10% resolution, with similar improvements for other
scales. Customizing progressive JPEG improves savings
to 83% for the 10% resolution case. The savings in read
bandwidth (Figure 3) from custom progressive JPEG can
largely be explained as a PSNR–read size trade-off. This

1If the requested resolutions were already cached, we would expect
performance to be identical under each scheme.
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Figure 4: Relative overhead of transcoding on the server (left)
and relative overhead of decoding custom progressive JPEG on
the client (right).

trade-off is evident for default progressive JPEG, which
overshoots the quality target (reading enough scans to
meet the quality target results in an average PSNR of
around 37-38 dB). Interestingly, the progressive schemes
seem to require roughly the same amount of read data for
all three image scales; this may be a limitation of using
PSNR to define image quality.

5.3 Compute Overheads

For lower resolutions, the decode overheads (Figure 4)
of custom progressive JPEG may be prohibitive (up to
13.6× slower than baseline JPEG) on the client side.
However, the computational cost of decoding a baseline
source image is comparable (1.0-2.4×) to that of de-
coding a custom progressive JPEG image. Given this
compute–bandwidth trade-off, it makes more sense to
transcode custom progressive JPEG images on the server
than to decode custom progressive JPEG on the client.

6 Discussion
We find that customizing progressive JPEG provides a
substantial advantage in terms of read size over default
progressive JPEG for our quality target. One caveat is
that customizing progressive JPEG relies on trading im-
age quality for read size; there is no inherent improve-
ment to the JPEG standard. Rather, custom progressive
JPEG facilitates partitioning images at a fine granular-
ity so that this partitioning matches quality specifications
closely. In this sense, default progressive JPEG can be
viewed as an lower-bound on the bandwidth savings of
custom progressive JPEG: 2.5× at a 37-38 dB thresh-
old. Decoding progressive JPEG images is also more
computationally expensive (by up to 13.6×) than decod-
ing their baseline counterparts, enough so that it does not
make sense to push decoding to the client. Still, decoding
progressive JPEG images partially for transcoding on the



server is comparable in terms of compute to decoding full
baseline images, so transcoding on the server with cus-
tom progressive JPEG remains a reasonable approach.

7 Related Work
Efficient image storage is an active field of research. Re-
cent work has aimed to reduce overheads due to meta-
data for small files [4] as well as develop SSD friendly
caching algorithms [16]. Related work has also investi-
gated the quality–density trade-off for approximate stor-
age, showing that matching the importance of image data
with the reliability of storage can improve storage effi-
ciency [6]. Using custom progressive JPEG limits meta-
data overheads when only storing a single version of each
image and can improve caching behavior as different ver-
sions of an image share data. Grouping scans of progres-
sive JPEG is related to ordering image data from most
to least important, but the binary format used here is not
amenable to storage on approximate storage media.

Progressive JPEG images can also be partially deleted
gracefully by discarding high frequency data first—
improving storage elasticity. The concept of motifs: de-
scriptions of computation needed to reconstruct a file dis-
cussed in [13, 14] is implicitly implemented by a dy-
namic resizing storage scheme as only the highest quality
version of an image is stored while lower quality versions
are implicitly defined by motifs.

Dynamic resizing has precursors in image processing
systems such as zimg [2] that allow clients to upload and
request images with added operations such as cropping
and scaling. To the best of our knowledge, these systems
do not vary the amount of data read based on quality via a
progressive frequency domain encoding. Dynamic resiz-
ing has also been used by Flickr [1] and Facebook [8]: in
addition to storing multiple versions of each photo, Face-
book incorporates “Resizers” when the requested ver-
sion requires additional processing. Finally, progressive
JPEG has been recently used by Facebook [3] to reduce
data consumption and speed up the apparent loading of
images on the client side; the latter is achieved by render-
ing an acceptable quality scan before all scans have been
transmitted. However, this approach does not involve dy-
namic resizing or customizing progressive JPEG.

8 Limitations and Future Work
A limitation of our current implementation is the cost of
evaluating custom scan configurations. Our naı̈ve imple-
mentation takes days to process 24,988 images on 8 clus-
ter nodes (12 cores/12 threads per node) with Westmere-
class CPUs. We suspect that this time can drastically re-
duced without sacrificing significant bandwidth savings
by aggressively pruning the search space or applying ma-
chine learning techniques to choose scan configurations.
Note that while the customization process for progres-

sive JPEG is currently expensive, it only needs to be per-
formed once, at write time.

The PSNR metric is limited in its relevance to per-
ceived visual quality [18]. We often found that the PSNR
of higher resolution resizes was higher than that of lower
resolution resizes even with less image data read—this
issue may be mitigated with conservative PSNR thresh-
olds. To the best of our knowledge, there is no standard,
widely used method of computing the image quality of a
resized image derived from a source image.

Finally, an issue when using progressive JPEG for
dynamic resizing is the minimum resolution of the re-
sized images. Progressive JPEG is less efficient in terms
of read bandwidth for resizes smaller than 10% of the
source image, which may limit savings when the source
images are much higher in resolution than their resized
versions. This threshold is due to JPEG’s use of 8× 8
macroblocks: even a single frequency coefficient repre-
sents at least 1

64 of the total image data. Even when ap-
proximations are used, this approach may require more
read bandwidth than pre-resized images. Still, using pro-
gressive JPEG should be more space-efficient than base-
line JPEG for dynamic resizing.

Future Work We expect that a solution to reduce the
cost of enumerating custom JPEG scan configurations
will be to prune the search space to a much smaller sub-
set of likely “good” configurations. It may be possible to
obtain comparable results by only trying a few custom
scan configurations per image—with this subset being
determined by identifying the best configurations when
naı̈vely re-encoding a larger dataset of images. Along
these lines, even choosing from a larger pool of config-
urations may be tractable if a machine learning model is
applied to each image to choose the best configuration.

9 Conclusion
Faced with growing demand for storage, image hosting
services are increasingly turning to dynamic image re-
sizing to improve the efficiency of image storage. We
showed that progressive encodings can dramatically re-
duce the amount of data that needs to be read for resiz-
ing images—potentially saving over 80% of read band-
width when tuned encode-time parameters used. Finally,
we give an estimate of progressive JPEG decode over-
heads which suggests that while serving custom progres-
sive images directly to energy-constrained devices is dif-
ficult to justify, transcoding custom progressive JPEG on
the server side incurs acceptable overheads.
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